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Jedes Übungsblatt enthält die Übungen (in der Regel Übungen 1 bis 4 und
Bonusübung)

Ich (Germain) schreibe die Übungen auf Englisch und übersetze sie dann ins
Deutsche (mit ChatGPT). Wenn du also das Gefühl hast, dass etwas seltsam
ist oder fehlt, schau dir bitte die englische Version an.

Nicht alle Übungen sind korrigiert: für die verbleibenden sollten Sie zu den
Mittwochssitzungen kommen!

Each exercise sheet contains the exercises of the Übungsblatt (usually exer-
cises 1 to 4 and bonus exercise)

I (Germain) am writing the exercises in English and then doing the trans-
lation to German (with ChatGPT), so if you feel like something is weird or
lacking, go to the English version, please.

Not all exercises are corrected: for the remaining one, you should come the
the Wednesday’ sessions!
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University of Osnabrück Martina Junhke

Institute of Mathematics Germain Poullot
Tarek Emmerich

Discrete Mathematics – Summer Semester 2025

Exercise Sheet 0

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [General Information]
Submit a sheet confirming that you have understood the following information.

1. Lectures are on Tuesdays and Thursdays, 10 am to 12 pm, room 66/E33.

2. The exercise session is held on Thursdays from 12 pm to 2 pm in room
69/117. Solutions to the exercise sheets will be presented during the exer-
cise session. The first exercise session will take place on 24.04.24.

3. Exercise sheets will be published weekly on Tuesdays. To be eligible to
take the exam, you must achieve 50% of the points on the exercise sheets
and quick series of questions (50% on each of them, not in total!).

4. Exercise sheets must be submitted online via Vips. Submission is possible
from 10 am on the Tuesday one week before the deadline (the next Wed-
nesday at 11:59 am). Exercise sheets can be submitted in groups of up to
three students. To do this, sign up for one of the groups under Vips →
Groups. Submission counts when one person from the group submits the
task (in case of doubt, the last uploaded file counts). Preferably upload
solutions as pdf written with LaTeX, or otherwise as jpg (for example, if
hand-written). Corrections will then be visible under Vips → Results.

5. From one Thursday to the next, you must answer, individually, a quick
series of questions (time limit: 90 minutes), on Vips.

6. Additionally, two tutorials are offered: Thursdays from 2 pm to 4 pm
(in 15/E07), and Fridays from 12 am to 2 pm (in 93/E31). The tutori-
als offer additional exercise problems to help you work on the exercise
sheets. You can also ask questions about the exercise sheets in the tuto-
rials. The tutorials are an optional additional offer. If you prefer to speak
English/français/español, please come on Thursdays.
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Exercise 2 [Adjacency Matrix and paths]

Compute the adjacency matrix A
of the graph G drawn here.

Compute A2 and A3. Show that the
entry in line i and column j of A2 (re-
spectively A3) is the number of paths
of length 2 (resp. 3) between i and j.

• • •

•

1 2 3

4

G =

Exercise 3 [Graph on graphs]
Draw the graph G3 with:
• Vertices: all the graphs on (exactly) 3 vertices,
• Edges: there is an edge between a graph G and a graph H if G is a sub-
graph of H (or the opposite).

How many vertices does G3 have? How many edges does G3 have? Is there a
sub-graph of G3 which is a cycle containing all its vertices?

Exercise 4 [Graph Isomorphisms]
Decide whether the following graphs are isomorphic.

1.
u1

u2

u3

u4
and

u1

u2

u3u4

2.
u1

u2

u3

u4
und

u1

u2

u3u4

If yes, provide a graph isomorphism.
If not, explain why not.

Exercise 5 [Bonus exercise – A Wikipedia game]
Consider the graph whose vertices are all (English) Wikipedia pages, and whose
edges are between two pages if there is a link from one page to the other (i.e.
you can click on a blue word on one page to go to the other). In this graph,
what is the distance between the page “Graph (discrete mathematics)” and the
page “Universe”?

Submission: 23.04.2025 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):
“ Let p1, . . . , pn ∈ R2 be n points, and define a graph G where {pi, pj} is an
edge if either pj is the closest point to pi, or vice versa.

The minimum number of (undirected) edges in G is n− 1 .
Example: if all pi (i ≥ 2) are closest to a central point p1, and p1 has one

closest neighbor among them, then each pair contributes at most one edge,
yielding n− 1 edges in total. ”

This is false, explain me why.

Exercise 7 [Drawing some graphs]
If possible, draw each of the following graphs, estimate the number of vertices,
edges, connected components..., and decide if it is a tree or not. Some graphs are
not properly defined, it is voluntary: you need to find which graph the author
would have like to define.

1. vertices: all countries in the European Union; edges: between two countries
sharing a border (use a map from Internet).

2. vertices: all rooms in the university; edges: between rooms that share a
door.

3. vertices: n points p1, . . . ,pn in the plane (none of them being equidistant
to two others); edges: (pi,pj) if j is the index that minimizes ||pi − pk||
for k ̸= i.

4. vertices: numbers from 0 to 16; edges: (x, y) if x divides y, and there is no
z such that x divides z and z divides y.

5. vertices: all graphs on 4 vertices; edges: (G,H) if H is a sub-graph of G.

6. vertices: pairs (letter of the alphabet, number); edges: between (X, i) and
(Y, j) if j = i+1 and there exists a word (in the German dictionary) with
the letter X in i-th position, and the letter Y in j-th position (draw it for
a small dictionary).

7. vertices: all proven mathematical theorems (or all math courses you have
followed during your life); edges: from a theorem to another if the second
one uses the first one to be proven.

8. vertices: all maths tutorium sessions that are given this semester; edges:
between session whose scheduled time slots intersect (show that all cycles
of length k ≥ 4 have a chord, i.e. two vertices, non-adjacent in the cycle,
that share an edge).

9. vertices: all Wikipedia pages; edges: between two pages if there is a link
from one page to the other.
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10. vertices: all the pieces of an IKEA furniture; edges: between two pieces if
you need to fix one to the other when assembling the furniture.

Exercise 8 [Too many edges forces the graph to be connected]

Let G be a graph on n vertices, with (strictly) more than
(
n−1
2

)
= (n−2)(n−1)

2
edges. Show that G is connected.

Exercise 9 [Complementary graph and connectivity]
For a graph G = (V,E), let its complementary graph be G = (V,E), where
there is an edge uv in G if and only if there is no edge uv in G. If G is not
connected, show that G is connected.
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Discrete Mathematics – Solutions Sheet 0

Exercise 1 [General information]
Well done, you know how to read!

Exercise 2 [Adjacency matrix and paths]

The adjacency matrix of the graph G is A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

, in line i and

column j, we put a 1 if there is an edge i j in the graph, otherwise we put a 0.
We have:

A2 =


2 1 2 1
1 3 1 2
2 1 2 1
1 2 1 3

 and A3 =


2 5 2 5
5 4 5 5
2 5 2 5
5 5 5 4


The reader easily sees that there are 5 paths of length 3 (i.e. with 3 edges

and 4 vertices) from the vertex 1 to the vertex 2 in G : (1, 4, 3, 2), (1, 2, 3, 2),
(1, 2, 4, 2), (1, 4, 1, 2), (1, 2, 1, 2). The same hols for all the other entries of A2

and A3.
However, note that we are not really counting “paths”, but rather “walks”:

a path can only use some edge once, whereas a walk can use several time the
same edge. The problem with taking powers of an adjacency matrix is that is
does not grant us access to the number of paths, but only of walks (which are
less interesting usually).

Exercise 3 [Graph on graphs]
In G3, there are 8 vertices and 19 edges. There is a cycle inside G3 which contains
all its vertices, we draw it in green on the figure.
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Exercise 4 [Graph Isomorphism]
1. These graphs are isomorphic, via u1 7→ u3, u2 7→ u2, u3 7→ u1, u4 7→ u4

2. These two graphs are not isomorphic: they do not have the same number
of edges.

Exercise 5 [Bonus – A Wikipedia game]
The length is 4 (maybe less):

Graph (discrete mathematics)→ Empty set→ Nothing→ Space→ Universe
If you have find any other path that is not “too long” (maybe even shorter), be
happy!

Exercise 6 [With ChatGPT]
The minimum is ⌈n2 ⌉, not n− 1. Indeed (will do only the case where n is even),
take the points (0, 0), (1, 0), (2, 0), (2, 1), (4, 0), (4, 1), . . . , (2n, 0), (2n, 1). Then
the edges of the resulting graph are between (2i, 0) and (2i, 1). There n edges,
but 2n vertices, so the number of edges is half the number of vertices.

Exercise 7 [Drawing some graphs]

Exercise 8 [Too many edges forces the graph to be connected]

Recall that the maximum number of edges of a graph on n vertices is
(
n
2

)
(which is the number of edges of the complete graph).

Suppose G is not connected. Then there exists A,B ⊊ V with A ∩ B = ∅
and A∪B = V , such that there is no edge in G between (a vertex in) A and (a
vertex in) B. We denote |A| = a and |B| = b, with a+b = n and 1 ≤ a, b ≤ n−1.
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In particular, the number of edges of G is at most
(
a
2

)
+
(
b
2

)
= 1

2

(
a(a− 1) +

b(b− 1)
)
= 1

2

(
a2+ b2− (a+ b)

)
This quantity is maximized when a = n− 1 and

b = 1 (or the converse), giving a maximum of
(
n−1
2

)
.

Hence, we have proven that if G has strictly more than
(
n−1
2

)
, then it is

connected.

Exercise 9 [Complementary graph and connectivity]
Let G = (V,E) be a disconnected graph. Then there exists A,B ⊊ V with
A ∩ B = ∅ and A ∪ B = V , such that there is no edge in G between (a vertex
in) A and (a vertex in) B.

Consequently, for x ∈ A and y ∈ B, there is an edge in G. Thus, G contains a
connected sub-graph on all its vertices, namely

(
A∪B, {(x, y) ; x ∈ A, y ∈ B}

)
(this graph is called the complete bipartite graph on A,B).
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University of Osnabrück Martina Junhke

Institute of Mathematics Germain Poullot
Tarek Emmerich

Discrete Mathematics – Summer Semester 2025

Exercise Sheet 1

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Isomorphism of Graphs]

(i) Determine whether the following two graphs are isomorphic. Justify your
answer and provide an isomorphism if applicable.

(ii) Show that the graph in the lower illustration is isomorphic to the graph
whose vertices are all the pairs of numbers {i, j} with 1 ≤ i ≤ 5, and
1 ≤ j ≤ 5; and where two such nodes {i, j}, {k, l} form an edge if and
only if {i, j} ∩ {k, l} = ∅.
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Exercise 2 [Trees]
Show that the following statements for a non-empty graph G = (V,E) are
equivalent:

(i) G is a tree.

(ii) G is minimally connected, i.e., G is connected and for each edge e ∈ E the
graph G \ e := (V (G), E(G) \ {e}) is not connected.

(iii) G is maximally cycle-free, i.e., G contains no cycles and for any two non-
adjacent vertices u and v in V , the graph G+uv := (V,E∪{uv}) contains
a cycle.

Exercise 3 [Center of trees]
A vertex u ∈ V is a center of a graph G = (V,E) when max{dist(u, v) ; v ∈ V }
is as small as possible.

(i) Let T be a tree with at least 3 vertices, and T ′ the tree obtained by deleting
every leaf of T . Show that T and T ′ have the same centers.

(ii) Deduce that a tree has either a unique center of two adjacent center.

(iii) Give a graph on n vertices with n centers.

Exercise 4 [Spanning Trees]

Let G = (V,E) be a graph, T a spanning tree in G, and C a cycle in G.

(i) Let e ∈ E(T ) ∩ E(C) be an edge. Show that there exists an edge f ∈
E(C) \ {e} such that (T \ e) + f is a spanning tree.

(ii) Let T ′ be another spanning tree in G, and let e ∈ E(T ) \ E(T ′) be an
edge. Show that there exists an edge f ∈ E(T ′) such that (T \ e) + f is a
spanning tree.

Exercise 5 [Bonus exercise – Chemistry]
Show that the graphical representation of alkanes (hydrocarbons) of formula
CnH2n+2 is a tree (remember that the carbon atom is valence 4, and the hy-
drogen atom is valence 1).

For n from 3 to 6, how many different is isomers of formula CnH2n+2 are
there ? Draw them. Recall that two molecules are isomer when they have the
same formula but not the same graphical representation (carbon atoms are
indistinguishable from each other, and so are hydrogen atoms).

Submission: by 30.04.2025 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):

“ To maximize the number of cycles in a simple graph with n vertices and
n+ 1 edges, consider the following construction:

Take the complete graph Kn−1, which has
(
n−1
2

)
edges and contains a large

number of cycles. Then, add a new vertex and connect it to exactly two of the
existing vertices in Kn−1.

This gives a graph with:

• n vertices,

• n+ 1 =
(
n−1
2

)
+ 2 edges,

• and at least
(
n−1
2

)
distinct cycles, all of which are already present in Kn−1.

Hence, the maximum number of cycles in a simple graph with n vertices and

n+ 1 edges is:

(
n− 1

2

)
. ”

That’s false, explain why. What is the maximum number of cycles of a graph
with n vertices and n+ 1 edges?

Exercise 7 [Drawing some graphs]
(Copy-pasted from Tutorium 0, Exercise 7)

If possible, draw each of the following graphs, estimate the number of ver-
tices, edges, connected components..., and decide if it is a tree or not. Some
graphs are not properly defined, it is voluntary: you need to find which graph
the author would have like to define.

1. vertices: all countries in the European Union; edges: between two countries
sharing a border (use a map from Internet).

2. vertices: all rooms in the university; edges: between rooms that share a
door.

3. vertices: n points p1, . . . ,pn in the plane (none of them being equidistant
to two others); edges: (pi,pj) if j is the index that minimizes ||pi − pk||
for k ̸= i.

4. vertices: numbers from 0 to 16; edges: (x, y) if x divides y, and there is no
z such that x divides z and z divides y.

5. vertices: all graphs on 4 vertices; edges: (G,H) if H is a sub-graph of G.

6. vertices: pairs (letter of the alphabet, number); edges: between (X, i) and
(Y, j) if j = i+1 and there exists a word (in the German dictionary) with
the letter X in i-th position, and the letter Y in j-th position (draw it for
a small dictionary).
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7. vertices: all proven mathematical theorems (or all math courses you have
followed during your life); edges: from a theorem to another if the second
one uses the first one to be proven.

8. vertices: all maths tutorium sessions that are given this semester; edges:
between session whose scheduled time slots intersect (show that all cycles
of length k ≥ 4 have a chord, i.e. two vertices, non-adjacent in the cycle,
that share an edge).

9. vertices: all Wikipedia pages; edges: between two pages if there is a link
from one page to the other.

10. vertices: all the pieces of an IKEA furniture; edges: between two pieces if
you need to fix one to the other when assembling the furniture.

Exercise 8 [Rehearsal on trees]

(i) Show that contracting an edge of a tree yields a tree. Show that deleting
a leaf of tree yields a tree.

(ii) Show that a tree is 2-colorable (i.e. can be colored by black and white such
that no two adjacent vertices receive the same color).

(iii) Show that between any two vertices of a tree, there exists a unique path.

Exercise 9 [Unicity of minimal spanning tree]
Let G = (V,E) be a connected graph, and ω : E → R+ a weight function. We
want to prove that: if ω(e) ̸= ω(f) for all edges e ̸= f , then G has minimal
spanning tree; moreover, this tree contains the edge with the smallest weight.

(i) Re-read the last exercise on spanning trees.

(ii) Conclude that a minimal spanning tree always contain the minimal edge.

(iii) Suppose there are two minimal spanning trees T1 and T2 of G. Consider
the edge e with minimal weight that is in T1 but not in T2 or in T2 but not
in T1. Suppose e is in T1. Construct a spanning tree of G with a smaller
weight.

(iv) Conclude on the unicity of the minimal spanning tree.

Exercise 10 [Prüfer sequences]
Take a tree T on vertices labelled from 1 to n. The Prüfer sequence pT is a
sequence of n numbers in {1, . . . , n} associated to T is obtained inductively.
Let i by the leaf of T with the minimal label, T\i the tree obtained from T by
removing i, and ji the unique neighbor of i in T , then: pT = j ∪ pT\i.

13



(i) Write the Prüfer sequences for all labeled trees up to 4 vertices.

(ii) Show that T 7→ pT is injective. Show that T 7→ pT is surjective (on which
set?). (Hint: Construct a reciprocal of the map T 7→ pT .)

(iii) How many labeled trees on n vertices are there ?
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Discrete Mathematics – Solutions Sheet 1

Exercise 1 []

(i) Yes, both graphs are isomorphic.

(ii) We provide below a labeling of the Petersen graph, from which it is directly

visible that it is isomorphic to the graph with vertex set
({1,...,5}

2

)
, where

two such vertices {i, j}, {k, l} form an edge if and only if {i, j}∩{k, l} = ∅.

{2, 5} {1, 4}

{1, 3} {2, 3}

{3, 4} {1, 5} {2, 4} {3, 5}

{4, 5}

{1, 2}

Exercise 2 [Trees]
(i) ⇒ (ii): Since G is a tree, its connectivity directly follows. Now, we show
that G \ e is not connected for every edge e ∈ E(G). Suppose there exists
e = vw ∈ E(G) such that G − e is connected. Then there exists a v-w path P
in G \ e. Adding the edge e to P would then form a cycle in G, contradicting
the fact that G is a tree and hence acyclic.

(ii) ⇒ (i): Since G is assumed to be connected, we only need to show that
G does not contain cycles. If G had a cycle C, then G \ e would be connected
for every edge e ∈ E(C), contradicting the assumption.

(i) ⇒ (iii): Since G is a tree, we already know that G is acyclic. Let u, v ∈
V (G) such that uv /∈ E(G). Since G is connected, there exists a u-v path
P = uu1 . . . us−1v in G. Then uu1 . . . us−1vu forms a cycle in G ∪ uv.

(iii) ⇒ (i): Since G is assumed to be cycle-free, it
suffices to show that G is connected. Let u, v ∈ V (G). If uv ∈ E(G), then

uv is already a u-v path. If uv /∈ E(G), then G′ = (V,E ∪ uv) contains a cycle

uu1 . . . us−1vu.

In this case, uu1 . . . us−1v is a u-v path in G.

Exercise 3 [Center of trees]
For u ∈ V , we denote by δT (u) = maxv∈V dist(u, v). Note that δT (u) ≥ 1
because there are at least 2 different vertices in T .
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If u is a leaf of T , we denote vTu its unique neighbor in T . For a leaf u
of T , then dist(vTu , w) = dist(u,w) − 1 for w ̸= u (and dist(vTu , u) = 1), so
δT (v

T
u ) = δT (u)− 1.
Furthermore, δT (u) is achieve on a leaf of T : it is true for the tree on 3

vertices, and if it is true on T ′, then it is true on T because for all w ∈ T and
u a leaf of T , we have dist(w, u) = dist(w, vTu ) + 1, where vTu is a leaf of T ′.

(i) First, if u is a center of T , then it is not a leaf of T , because if u is a leaf,
then δT (v

T
u ) < δT (u). Besides, consider any vertex w of T that is not a leaf:

δT (w) = dist(w, u) for some leaf u of T , thus dist(w, vTu ) = δT (w)−1 is the
maximum of dist(w, v) for v ∈ T ′, i.e. δT ′(w) = δT (w)− 1. Consequently,
the minimizers of δT and δT ′ are the same: T and T ′ have the same centers.

(ii) We do an induction on the number of vertices of T . If T has 1 vertex, it
has a unique center. If T has 2 vertices, then both are centers and they
are adjacent. If T has 3 or more vertices, then T has the same centers
than T ′ (obtained from T by removing all its leaves): as T ′ have strictly
fewer vertices, T ′ has 1 center or 2 adjacent centers, and the induction is
complete.

Exercise 4 [Spanning Trees]

• T \ e is not connected. Let e = vw. Since C is a cycle, there exists a path
P from v to w in C \ e. Let A and B be the connected components of
T \ e. Since T is a spanning tree, there exists an edge f = xy ∈ E(P ),
with x ∈ V (A) and y ∈ V (B). Adding f to T \ e creates a spanning tree,
because (T \ e) + f is minimally connected and spanning.

• Let e = vw. Since T ′ is a spanning tree, there exists a path P ⊆ T ′ from
v to w. P + e forms a cycle. The claim follows from (i).

Exercise 5 [Bonus – Chemestry]
Consider the graph G = (V,E) whose vertices are the atoms of the molecule
CnH2n+2, and whose edges are the bounds between the atoms. This graph has
n+(2n+2) = 3n+1 vertices, with n vertices of degree 4, and 2n+2 vertices of
degree 1. The degree formula grants that 2#E = 4×n+1× (2n+2) = 6n+2.
Hence #E = 3n+1 = #V −1. As this is the graph of a molecule, it is connected,
so it is a tree. Note that it is impossible that there is a double-bound between
carbon atoms because it would break the connectivity of the molecule.

As hydrogen atoms are indistinguishable, and carbon atoms are indistinguis-
hable, we can just represent a molecule by its carbon atoms. We can construct
all these trees by adding the carbon atoms one at a time:

• For n = 3, there is 1 tree.

• For n = 4, there are 2 trees.
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• For n = 5, there are 3 trees.

• For n = 6, there are 5 trees.

C C C C C C C C CC

C

C C C C C C C C C

C

C CC

C

C

C C C C C C C C C C C

C

C C C C C

C

C C C C

C

C

C C C C

C C

Exercise 6 [With ChatGPT]

The maximum number of cycle in a graph with n vertices and n + 1 edges
is 3. The proof is left as an exercise to the reader.

Exercise 7 [Drawing some graphs]

Exercise 8 [Rehearsal on trees]
A tree is a connected graph with 1 less edge than vertices.

(i) Contracting yields a connected graph and the number of edges is still 1
less than the number of vertices. Deleting a leaf diminish the number of
vertices by 1, and the number of edges also by 1, and the connectivity is
kept.
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(ii) Suppose all trees on n vertices are 2-colorable (this is true for n = 1 and
n = 2). Take a tree T on n+1 vertices, remove a leaf v, 2-color the resulting
tree. In T , the leaf v has only 1 neighbor u : color v in the opposite color
of u to get a 2-coloring of T . By induction, all trees are 2-colorable.

(iii) Idem : this is true for trees with n = 1 and n = 2 vertices. If this is true
for all trees on n vertices, then take T on n+1 vertices, discard a leaf v to
obtain T ′. Let u, u′ be vertices of T . If u, u′ are vertices of T ′, then there
is a unique path between them (by induction), otherwise u = v, and let v
be the unique neighbor of u in T . All paths between v and u′ gives a path
between v and u′, and we know there is a unique such path. Hence there
is a unique path between v and u′.

Exercise 9 [Unicity of minimal spanning tree]

(i)

(ii) Suppose the minimal spanning tree T does not contain the minimal edge
e. Then T + e contains a cycle C, and hence there exists another spanning
tree T ′ = (T\f) + e for some f ̸= e an edge of T . As the weight of
T ′ is ω(T ) + ω(e) − ω(f) < ω(T ) (because ω(e) is minimal), we have a
contradiction.

(iii) Consider T2 + e: it has a cycle C, so we can remove an edge e2 ̸= e
from T2 such that T ′ = (T2\e2) + e is again a tree. It is spanning G, and
ω(T ′) = ω(T2) + ω(e)− ω(e2) < ω(T2) by hypothesis on e.

(iv) If there are two different minimal spanning trees T1 and T2, then the
previous question allows to construct T ′ with ω(T ′) < ω(T2), which con-
tradicts the minimality of T2. Consequently, there can not be two different
minimal spanning trees.

Exercise 10 [Prüfer sequences]

(i) There are 16 labeled trees on 4 vertices, and Prüfer sequences are all
sequences of length 3 where the first 2 values can be any number in 1, . . . , 4
(and the last digits is always 4).

(ii) blah blah, see Wikipedia

(iii) There are nn−2 sequences that can be Prüfer sequences, hence there are
nn−2 labeled trees on n vertices.
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Discrete Mathematics – Summer Semester 2025
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For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [3-regular graphs]
A graph G = (V,E) is 3-regular when every vertex has exactly 3 neighbors.

1. Prove that |V | is even.
2. For p ≥ 2, construct explicitly a 3-regular graph G = (V,E) with |V | = 2p.

(Hint: For p ≥ 3, think bipartite.)

Exercise 2 [Grids, bicycle-wheels, complete k-partite graph]
The waist-width of a graph G is the length of a shortest circle in G.
The diameter of a graph G is the maximum length of a shortest path in G.
Determine the number of edges, maximum degree, average degree, waist width
and diameter of the following graphs:
(i) [Grid ] Gn,m = (V,E) with V = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and

E = {{(v, w), (v′, w′)} : |v − v′|+ |w − w′| = 1}.
(ii) [Bicycle-wheel ] BWk = (V,E) with V = {a, b, c1, . . . ck} and E = {ab} ∪
{aci, bci : i ∈ [k]} ∪ {c1c2, . . . , ck−1ck, ckc1}. See Figure 1

(iii) [Complete k-partite graph] Kn1,...,nk
= (V,E) given by V = V1 ·∪ . . . ·∪Vk

with |Vi| = ni and E = {vw : v ∈ Vi, w ∈ Vj with i ̸= j}. A ·∪B is the

disjoint union, that is A ∪ B with A ∩ B = ∅.

b

a

c1

c2

c3

c4

c5

Abbildung 1: BW5
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Exercise 3 [Adjacency Matrix]
The trace of an n × n matrix A = (aij) is defined as the sum of the diagonal
elements, i.e., trace(A) =

∑n
i=1 aii. Let G = (V,E) be a graph with adjacency

matrix A.
(i) Show that trace(A2) = 2 |E|.
(ii) Show that trace(A3) = 6 ×

(
number of triangles in G

)
. Where three ver-

tices i, j, k forms a triangles if ij, jk and ik are edges of G.
(iii) Let B be the adjacency matrix of Kn. Find a formula for trace(B3).
(iv) Show that trace(B4) = n4+2n3+n2. Recall that nk = n(n−1)(n−2) . . . (n−k+1).

Exercise 4 [Bridges]
Let G = (V,E) be a graph. An edge e ∈ E is called a bridge of G if the number
of components of G \ e is greater than that of G.

(i) Which trees have bridges?

(ii) For which m,n does Km,n have a bridge? Justify your answer.

(iii) Show that an edge e of a graph G is a bridge if and only if e does not
belong to any cycle of G.

Exercise 5 [Bonus – Graph of friendship]
Have you noticed that, at a party, there are always (at least) two persons that
know exactly the same number of other people?

Prove this fact by introducing the right graph. (Assume that if person A
knows person B, then B also knows A.)

Submission: by 07.05.2025 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):

“ Let G = (V,E) be a simple graph with adjacency matrix A. We want to
compute trace(A4).

Closed walks and powers of the adjacency matrix Recall that the entry
(Ak)ij counts the number of walks of length k from vertex i to vertex j in G. In
particular, the trace of Ak counts the number of closed walks of length k in G:

trace(Ak) =
∑
i∈V

(Ak)ii

This is the total number of closed walks of length k starting and ending at
the same vertex.

Computation of trace(A4) We want to compute trace(A4), which corre-
sponds to the total number of closed walks of length 4 in G.

There are several types of walks contributing to this trace:
1. Edge bounces: For each edge {i, j} ∈ E, there are closed walks like

i → j → i → j → i, and its reverse. Each such pair contributes 2 closed
walks of length 4. Since each edge allows such walks starting at both ends,
the contribution is:

from edges: 2|E|

2. Triangles: Every triangle contributes additional closed walks of length 4,
for example by traversing three vertices and returning with a backtrack.
These contribute in total 4 closed walks per triangle.

3. 4-cycles: Every 4-cycle (square) contributes 8 closed walks of length 4,
corresponding to 4 starting points and 2 directions (clockwise and coun-
terclockwise).

There is a well-known identity in graph theory that summarizes this:

trace(A4) = 2
∑
i∈V

deg(i)2 + 4 · t+ 8 · q

where:
1. deg(i) is the degree of vertex i,
2. t is the number of triangles in the graph,
3. q is the number of 4-cycles (i.e., quadrilaterals).

”

Exercise 7 [König’s lemma on bipartite graphs]
We want to prove the following [König, 1916]: A graph is bipartite if and only
if it has no cycle of odd length.
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1. Prove that a graph is bipartite if and only if it is 2-colorable (i.e. we can
color the vertices with black and white such that no edge have its two
endpoints of the same color).

2. Prove that if a graph is 2 -colorable, then it has no odd cycle.
3. Let G be a graph without odd cycle, we want to color it with 2 colors:

(a) Explain why we can restrict to connected graphs.
(b) Suppose G is connected and fix x ∈ V . Let Vk the subset of V formed

by the vertices that are at distance exactly k from x. Prove that if
there is an edge between y ∈ V2p and z ∈ V2q for some p, q, then G
has an odd cycle.

(c) Conclude

Exercise 8 [Complete graph, Path, Cycle, Circulants]
Same as Exercise 2, on the following graphs:

1. Complete graph Kn = (V,E) with V = {1, . . . , n} and E = {ij ; i ∈
V, j ∈ V }.

2. Path Pn = (V,E) with V = {1, . . . , n} and E = {ij ; j = i+ 1}.
3. Cycle Cn = (V,E) with V = {1, . . . , n} and E = {ij ; j = i + 1 or (i =

1, j = n)}.
4. Let a1, . . . aℓ ∈ N with 0 < a1 < · · · < aℓ ≤ n

2 . We consider the graph
Cn(a1, . . . , aℓ) = (V,E) with V = {v0, v1, . . . , vn−1} and E = {vivi+ak

:
1 ≤ k ≤ ℓ, 0 ≤ i ≤ n− 1} (indices are considered modulo n). See Figure 2.
Determine the number of edges in Cn(a1, . . . aℓ).

5. Your favorite graph from Tutorium 1.

0

12

3

4 5

Abbildung 2: C6(1, 3)

Exercise 9 [Mantel’s theorem]
A triangle in a graph G = (V,E) is a triplet of vertices u, v, w ∈ V that are pair-
wise linked by an edge, i.e. (u, v), (v, w), (u,w) ∈ E. We want to prove Mantel’s

theorem: If a graph on n vertices has no triangle, then it has at most n2

4 edges.
1. Fix n and consider K⌊n

2 ⌋,⌈n
2 ⌉, the complete bipartite graph. How many

edges has it? Conclude that of Mantel’ theorem is optimal.
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2. Prove that if Mantel’s inequality holds for all connected components of G
then it holds for G.

3. Fix G = (V,E) without triangle, with |V | = n. Let d(u) be the degree of
u ∈ V . Show that for an edge (u, v) ∈ E, then d(u) + d(v) ≤ n.

4. Prove Mantel’s theorem by induction on its number of vertices. Hint: Express

the number of edges of G by fixing (u, v) ∈ E and considering H, the graph obtained by

removing the vertices u and v from G.

Exercise 10 [Connectivity when discarding a vertex]
Let G be a connected graph. We want to prove that there exists a vertex v of
G such that G\{v} is connected.

1. Find a connected graph in which any vertices can be discard without
destroying connectivity.

2. Find a connected graph in which only 2 different vertices can be discard
without destroying connectivity.

3. Fix a connected graph G and consider the longest path (s1, s2 . . . , sr) in
G. Let H = G\{s1} and fix t, t′ vertices of H.
(a) Why is there a path (t1, . . . , tm) in G with t1 = t and tm = t′ ?
(b) If s1 ̸= tj for all j, show that t and t′ are connected in H.
(c) If s1 = tj for some j, show that tj−1 = su for some u ≥ 2 and

tj+1 = sv for some v ≥ 2.
(d) Show that there exists a path from t to t′ in H, and conclude.
(e) Show that G\{sr} is also connected, and conclude on the minimality

of the example you have found in question 2.
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Discrete Mathematics – Solutions Sheet 2

Exercise 1 [3-regular graphs]

1. Degree formula :
∑

u∈V d(u) = 2|E|. For all u ∈ V , d(u) = 3 because G is
3-regular, hence: 3|V | = 2|E|, so |V | is even (because 3 is not).

2. One example of construction (there are a lot): V = {−p,−(p−1) . . . ,−1}∪
{1, 2, . . . p}, and the vertex −i shares an edge with the three vertices i, i+1
and i+2 (mod p). Then the vertex j shares an edge with the vertices −j,
−(j − 1) and −(j − 2) (mod p), so the graph is 3-regular.

You can re-do this exercise for any q-regular graph for q prime.

Exercise 2 [Grids, bicycle-wheels, complete k-partite graph]
(i)

• |E(BWk)| = 3k + 1

• ∆(BWk) = k + 1

•

∑
v∈V (BWk)

d(v)

|V (BWk)|
=

6k + 2

k + 2

• The girth of BWk is 3 for k ≥ 4 and 2 for k = 3.

• The diameter of BWk is 2 for k ≥ 4 and 1 for k ≤ 3.

(ii)

• |E(Gn,m)| = 2nm−m− n

• The average degree of Gn,m is as follows:

n m Average degree of Gn,m

1 1 0
1 ≥ 2 2m−2

m
≥ 2 1 2m−2

m
≥ 2 ≥ 2 4nm−2n−2m

nm

• The girth of Gn,m is 4 for n,m ≥ 3 and 0 or 1 in other cases.

• The diameter of Gn,m is m+ n− 2.

(iii)

• for v ∈ Vi, d(v) =
∑

j ̸=i |Vj | = n− ni ; average degree :
∑r

i=1
ni

n (1− ni

n )

• |E(Kn1,...,nr
)| = 1

2

∑
v∈V d(v) = 1

2

∑r
i=1 ni(n− ni)

• girth = 3 if r ≥ 3 (there are triangles everywhere), girth = 4 if r = 2
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• diameter = 2

Exercise 3 [Adjacency Matrix]

(i) Let A2 = (bij). Theorem 1.6 states that bii counts the number of paths
of length 2 from vertex vi to itself. Each such path vivjvi corresponds to
an edge vivj ∈ E(G) for vj ∈ V (G), and conversely, each edge vivj ∈
E(G) corresponds to exactly two paths; namely vivjvi and vjvivj . Hence,

trace(A2) =
∑|V (G)|

i=1 bii = 2|E(G)|.

(ii) In general, trace(Ak) counts the number of closed walks in G of length k
(i.e. sequences of k edges, which starts and finishes at the same vertex). If
a closed walk is of length 3, then it is necessarily a triangle, because a walk
using twice the same edge cannot finish where it started. So A3

ii counts
twice the number of triangles containing the vertex i (“twice” because each
triangle can be walked on in two directions). So

∑
i A

3
ii counts twice the

number of pairs (t, i) where t is a triangle of G, and i is a vertex of t. There
are 3 vertices in a triangle, so

∑
i A

3
ii = 2#{(t, i) ; t triangle of G, i ∈ t} =

2× 3#{t ; t triangle of G} = 6×
(
number of triangles of G

)
.

(iii) Let B3 = (bij). All paths of length 3 from a vertex vi to itself are of

the form viwzvi for all {w, z} ∈
(
V (G)\{vi}

2

)
, and each subset {w, z} ∈(

V (G)\{vi}
2

)
corresponds to two paths viwzvi and vizwvi. Therefore,

trace(B2) =

n∑
i=1

bii =

n∑
i=1

2

(
n− 1

2

)
= n(n− 1)(n− 2)

(iv) Let B4 = (bij). There are 4 different types of paths from a vertex vi to
itself of length 4:

– vixyzvi. These correspond to subsets {x, y, z} ∈
(
[n]\{vi}

3

)
, and each

subset {x, y, z} ∈
(
[n]\{vi}

3

)
corresponds to 6 paths.

– vixyxvi. These correspond to subsets {x, y} ∈
(
[n]\{vi}

2

)
, and each

subset {x, y} ∈
(
[n]\{vi}

2

)
corresponds to 2 paths.

– vixviyvi. These correspond to subsets {x, y} ∈
(
[n]\{vi}

2

)
, and each

subset {x, y} ∈
(
[n]\{vi}

2

)
corresponds to 2 paths.

– vixvixvi. These correspond to elements x ∈ V (G) \ {vi}, and each
element x ∈ V (G) \ {vi} corresponds to a unique path.

Thus, we have:

trace(B4) =

n∑
i=1

bii = n

(
6

(
n− 1

3

)
+ 2

(
n− 1

2

)
+ 2

(
n− 1

2

)
+ (n− 1)

)
= n4 + 2n3 + n2.
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Exercise 4 [Bridges]

(i) Removing any edge of a tree creates 2 connected component : all edges of
trees are bridges.

(ii) If we remove any edge from Km,n, it remains connected if and only if every
vertex has degree at least 2, i.e., if m,n ≥ 2. The only complete bipartite
graphs with a bridge are K1,n (or Km,1).

(iii) Without loss of generality, assume that G is connected. Suppose e lies on
a cycle C = u1 . . . unu1 of G and let e = unu1 without loss of generality.
Let u, v be vertices of G \ e. Then there exists a u–v path P in G, since
G is connected. If P does not use edge e, then it is a u–v path in G \ e.
Suppose P uses edge e. Replacing e in P with the path u1 . . . un gives a
path from u to v in G \ e that does not use e. Hence, there exists a u–v
path in G \ e, and the number of components does not increase. Thus, e
is not a bridge.

Now suppose e = uv is not on any cycle. Then u and v lie in different
components of G \ e. For if they were in the same component, then there
would be a u–v path in G \ e and hence also in G. Together with e, this
path would then form a cycle, contradicting the assumption. Thus, G \ e
has at least two components, and e is a bridge.

Exercise 5 [Bonus – Graph of friendship]
Let G = (V,E) be the graph where V is the set of people present at the party,
and there is an edge between two people if they know each other. We want to
prove that there exists two vertices of G with the same degree. Let n = |V |,
then degrees are between 0 and n−1, so d : V → {0, . . . , n−1}. If d is injective,
then its image is of cardinal |V | = n, so its image is exactly {0, . . . , n− 1}. This
implies there is a vertex u with degree 0 (someone that knows no-one), and a
vertex v with degree n− 1 (someone that knows everybody). This is clearly not
possible: is (u, v) ∈ E or not ? Hence d is not injective: there exist u, v ∈ V with
u ̸= v and d(u) = d(v).

Exercise 6 [With ChatGPT]
Apply the formula claimed by ChatGPT to a triangle (i.e. the complete graph
on 3 vertices): it has 3 vertices of degree 2, and 1 triangle. The claimed formula

gives 2 · 3 · 22 + 4 · 1 + 0 = 28. But the adjacency matrix is A =

0 1 1
1 0 1
1 1 0

,

with A4 =

6 5 5
5 6 5
5 5 6

, so trace(A4) = 18 ̸= 28.

Its error comes from the total bullshit it is saying about triangles.
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Exercise 7 [König’s lemma and bipartite graphs]

1. If G = (V,E) is bipartite, then let V = A⊔B such that there is no edge in
between the vertices in A nor in between the vertices in B. Then coloring
A in white and B in black gives a 2-coloration of G. Reciprocally, if G is
2-colorable, then let A by the set of white vertices, and B the black ones.
We have V = A ⊔ B, and there is no edge in between the vertices in A,
nor in B. Hence, G is bipartite.

2. If G is k-colorable, then so is any of its sub-graphs (by direct application
of definitions). An odd cycle is not 2-colorable because it is not bipartite,
hence a 2-colorable graph has no odd cycle.

3. (a) A graph is bipartite if and only if all its connected component are.
A graph is odd-cycle-free if and only if all its connected component
are. Hence we can restrict to connected component.

(b) Suppose there is y ∈ V≤2p and z ∈ V≤2q such that (y, z) ∈ E. Consi-
der a path u0, . . . , u2p with u0 = x and u2p = y, and a path v0, . . . , v2q
with v0 = x and v2q = z. There is an edge (u2p, v2q) ∈ E, hence
P = (u0, u1, . . . u2p, v2q, v2q−1, . . . , v0) is an edge-path in G that goes
from x to x. It has length 2p + 2q + 1, which is odd, but it is not
necessarily a cycle because some vertices can be the same (i.e. ui = vj
for some i, j). Consider the union of all the edges in P, and remove
the edges that appear twice to obtain Q. This gives a collection of
cycles, and Q contains a odd number of edges (because we have re-
moved an even number of edges from P). Consequently, at least one
of the cycles in Q is odd.

(c) Suppose G has no odd cycle and fix x ∈ V . Color x in white, and
all the vertices at even distance of x in white, and the vertices at
odd distance in black. This is a 2-coloration of G because (i) there
is no edge between white vertices (otherwise there will be an odd
cycle according to the previous question), and (ii) there is no edge
between black vertices (apply the lemma of the last question from a
black vertex instead of x). Thus ifG has no odd cycle, it is 2-colorable,
which means it is bipartite.

Exercise 8 [Complete graph, Path, Cycle, Circulants]

(1) |E(Kn)| =
(
n
2

)
= n(n−1)

2 ; degrees = n − 1 = average degree ; girth = 3 ;
diameter = 1.

(2) |E(Pn)| = n− 1 ; degrees ∈ {1, 2} ; average degree = 2n−2
n ; girth = +∞

; diameter = n.
(3) |E(Cn)| = n − 1 ; degrees = 2 = average degree ; girth = n ; diameter

= ⌊n2 ⌋.
(4) First, assume that aℓ <

n
2 . For vi ∈ V (Cn(a1, . . . , al)), we have N(vi) =

{vi±aj
: j ∈ [ℓ]}. Since aj < n

2 , the elements of this set are pairwise distinct,
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and thus d(vi) = 2ℓ. It follows that

|E| = 1

2

∑
v∈V

d(v) =
1

2
n · 2ℓ = nℓ.

If aℓ =
n
2 , then d(v) = 2ℓ− 1 for every v ∈ V , and therefore

|E| = 2nℓ− n

2

Exercise 9 [Mantel’s theorem]

1. The number of edges of K⌊n
2 ⌋,⌈n

2 ⌉ is ⌊n2 ⌋ × ⌈
n
2 ⌉ = ⌊

n2

4 ⌋. Hence Mantel’s
inequality is optimal because the number of vertices of K⌊n

2 ⌋,⌈n
2 ⌉ is n.

2. Take two disjoint sub-set of V with no edge between them (not necessarily
connected components), say on V1 and V2 with |V1| = n1 and |V2| = n2.

Both sub-graphs are triangle-free, so |E1| ≤ n2
1

4 and |E2| ≤ n2
2

4 . Conse-
quently, as there is no edge between V1 and V2 : |E| = |E1| + |E2| ≤
n2
1

4 +
n2
2

4 ≤
(
n1+n2

2

)2
= (n1+n2)

2

4 . By induction, if Mantel’s inequality hold
for connected components, it holds for the whole graph.

3. As G has no triangle, if x is a neighbor of u, then it is not a neighbor
of v. Thus, each x ∈ V \{u, v} share an edge with at most one of the
vertices u or v: the number of edges between {u, v} and V \{u, v} is at
most |V \{u, v}| = n− 1. Adding the edge (u, v), we get d(u) + d(v) ≤ n.

4. Our induction is going to remove 2 vertices at each step, so we initialize
with n = 1 and n = 2. For n = 1, there is no edge, so the statement
holds; for n = 2, there is at most 1 edge, so the statement holds. Suppose
Mantel’s theorem holds for all graphs on n−2 vertices, and fix G = (V,E)
on n vertices. Pick an edge (u, v) ∈ E, and consider the graph H obtained
by removing u and v from G. The graph H has n−2 vertices, so |E(H)| ≤
(n−2)2

4 . Besides, edges of G are either contained in H or adjacent to u or
v, so there are (the −1 avoids the double counting of the edge (u, v)):

|E| = |E(H)|+ d(u) + d(v)− 1 ≤ (n− 2)2

4
+ n− 1 =

n2

4

One can actually prove that the balanced bipartite graph of 1. is the only
graph without triangle to achieve equality in Mantel’s theorem, but we will no
do that here.

Exercise 10 [Connectivity when discarding a vertex]
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1. Complete graph

2. Path

3. (a) t and t′ are also vertices of G, and G is connected.

(b) If s1 ̸= tj , then all tj are vertices of H, hence (t1, . . . , tm) is a path
in H.

(c) If tj−1 /∈ {s2, . . . , sr}, then one can add tj−1 to the path to obtain
(tj−1, s1, . . . , sr) because tj−1s1 is an edge of G. Then this new path
is longer than (s1, . . . , sr), contradicting the assumption. The same
holds for tj+1.

(d) Assume u ≤ v, and consider (t1, . . . , tj−1, su+1, . . . , sv−1, tj+1, . . . , tm).
All vertices are in H by construction, and there is an edge between
every consecutive vertices, and t and t′ are connected in H (the same
holds if v ≤ u). Consequently, H is connected (we have proven that
every too vertices are connected).

(e) Actually, we have proven that every end point of a longest path can
be discard without infringing the connnectivity of G. This is the case
for sr also, and sr ̸= s1, hence for every graph there are at least 2
vertices that can be discarded without breaking connectivity. For a
path, there are exactly 2 such vertices.
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For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Perfect matching]
A perfect matching M in a graph G = (V,E) is a collection of edges M ⊆ E
such that every vertex in V is adjacent to exactly one of the edges of M .

1. Show that Kn has a perfect matching if and only if n is even.
2. Show that Kn,m has a perfect matching if and only if n = m.
3. How many different perfect matchings has K3,3?
4. Alice and Bob play a game against each other on a graph G. Alice starts

by choosing a vertex, then each player plays alternatively by choosing a
neighbor of the last vertex chosen (that have not been chosen before). The
first player that cannot play looses. Show that if G has a perfect matching,
then Bob can always win, whatever Alice does.

Abbildung 3: A balloon sculpture

Exercise 2 [Trail partition and balloon sculptures]
You need to help a balloon artist to make balloon sculptures, see Figure 3 (Right).
A graph G = (V,E) can be made of k balloons if there exists k disjoint edge-
paths P1, . . . , Pk such that every edge e ∈ E belongs to exactly one of the path
Pi (an edge-path can use a vertex several times; two edge-paths are disjoint
when they do not share any common edge, they could share vertices).

1. The graph of Figure 3 (Left) can be made of 1 balloon, as illustrated in
Figure 3 (Right). Which theorem of the lecture ensures that ?

2. Suppose a connected graph G can be made of k ≥ 1 balloons. Show that
G has an even number m of vertices of odd degree, with m ≤ 2k.
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3. How many balloons do you need to make the Platonic solids whose graphs
are given in Figure 4? For each, draw the partition of the graph made by
these balloons, as illustrated in Figure 4 (second graph).

Abbildung 4: Graphs of some Platonic solids. The second graph is already de-
composed into 4 balloons (= 1 blue dotted + 1 red thick + 1 green dashed + 1
violet thin): you have to decompose the other graphs into balloons.

Exercise 3 [Degree Sequences in Trees]

1. Let d1, . . . , dn be positive natural numbers with n ≥ 2 and
∑n

i=1 di =
2n − 2. Show that there exists a tree on n vertices with vertex degrees
d1, . . . , dn. The sequence d1, . . . , dn is also referred to as a degree sequence.

2. Let T be a tree with 12 vertices, with exactly three vertices of degree 3
and exactly one vertex of degree 2. Determine the degree sequence of T .

3. Does the degree sequence in (2.) uniquely define the tree T (up to isomor-
phism)? If not, draw two non-isomorphic trees with this degree sequence.

Exercise 4 [Making non-Eulerian graphs Eulerian]

1. Prove that the number of odd-degree vertices of a G is always even.
2. LetG be a graph which is not Eulerian. Prove thatG can be made Eulerian

by adding 1 vertex and some edges.
3. Let G be a graph which is not path-Eulerian. State and prove a necessary

and sufficient condition on G such that there exists a path-Eulerian graph
H obtained by adding 1 vertex and some edges to G.

4. Let G be a graph which is not Eulerian, with 2k odd-degree vertices. State
and prove a necessary and sufficient condition on G such that there exists
a Eulerian graph H obtained by removing exactly k edges to G. Hint: Look

at the graph formed by the vertices of G of odd degree and the edges between them, then

re-read Exercise 1.

Exercise 5 [Bonus – Organizing a school trip]
Every day, a group of 12 children go for a walk, holding hands by pairs (like
you probably did a long time ago). How many days can they go for a walk, if
we don’t want any child to have the same neighbor twice? What if the walk is
now done in rows of three?

Submission: by 14.05.2025 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):

“ We are asked: How many bipartite graphs are there on 3 labeled vertices?
A graph is bipartite if its vertex set can be partitioned into two disjoint

subsets A and B, with edges only between A and B.
Step 1: Enumerate all bipartitions The possible bipartitions of V = {1, 2, 3}

are:
- |A| = 1, |B| = 2: There are

(
3
1

)
= 3 such partitions. For each, there are

22 = 4 possible bipartite graphs. - |A| = 2, |B| = 1: Again,
(
3
2

)
= 3, and each

gives 22 = 4 bipartite graphs.
Thus, the total number of bipartite graphs is:

3 · 4 + 3 · 4 = 24.

Including the empty graph (which corresponds to the case where no edges are
present), we obtain the total number:

24 + 1 = 25.

Thus, there are 25 bipartite graphs on 3 labeled vertices. ”
This is false, why?

Exercise 7 [Number of perfect matchings]

1. How many perfect matchings are there in the path Pn (distinguish n odd
or even)?

2. How many perfect matchings are there in the cycle Cn (distinguish n odd
or even)?

3. How many perfect matchings are there in the complete graph Kn (distin-
guish n odd or even)?

4. How many perfect matchings are there in the complete bipartite graph
Kn,n?

Exercise 8 [Fleury’s algorithm]
In the lecture, you have seen a proof of the following theorem: if a graph has 2
vertices of odd degre, then it has an Eulerian trail. From the lecture, one can
retrieve an algorithm (Hierholzer’s algorithm, 1873) that explicitly construct
the Eulerian trail. Here, we give another algorithm (which is easier to prove,
but less efficient in practice): Fleury’s algorithm (1883).
(a) Fix a graph G. Start at a u vertex of odd degree, and an empty path P.
(b) Choose a neighbor of u such that G\uv is connected, and add the edge uv

to your path P.
(c) If no such neighbor exists, then u shall have only 1 adjacent edge: add it to

your path P and terminate.
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(d) Remove the edge uv from your graph, and repeat the process from v (in the
graph G\uv) at step (b).
Prove that this algorithm terminates and that, when it stops, the trail P is

an Eulerian trail. What is the complexity of this algorithm?

Exercise 9 [Adjacency matrix – again]
In what follows, we consider the complete bipartite graph Kn,m, and its adja-
cency matrix An,m. The vertices of Kn,m are labelled a1, . . . , an and b1, . . . , bm
such that its edges are aibj for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. We label
the coordinates of v ∈ Rn+m accordingly.

1. Prove that 0 is an eigenvalue of multiplicity at least n +m − 2 of An,m.
(Hint : search an eigenvector with very few non-zero coordinates.)

2. For n = m, prove that n and −n are eigenvalues of An,n. Deduce its dia-
gonalization (i.e. give all the eigenvectors together with the eigenvalues).

3. For n ̸= m, and v ∈ Rn+m, prove that the value of the coordinate of Av
on the vertex ai does not depend on i.

4. For n ̸= m, find the eigenvectors of An,m associated to a non-zero eigen-
value, and deduce it is diagonalizable.

Exercise 10 [Exercice 4 – continuation]
If you have solved questions 1 and 2 of the above Exercise 4 and the exercises
on adjacency matrix from the previous Übungsbätter:

5. Prove that there are nk−1 cycles of even length in Kn,n that contains a1
(here, cycles are allowed to use several times the same edge), and 0 cycle
of odd length.

Exercise 11 [Dominoes]
Your are given a pile of dominoes, containing all possible dominoes you can
make using numbers from 1 to 5. As per usual, two dominoes can be put side to
side if there end matches. How many dominoes do you have? Can you arrange
your dominoes into a circle using all your dominoes?

Replace 5 by n, and re-do the exercise.

Exercise 12 [Wire-frame of a cube]
You have 120cm of steel wire. You want to construct (the frame of) a cube with
sides of 10cm. Can you do it?

Exercise 13 [Polygamy Matching Theorem and Tic-Tac-Toe]

1. Let G = (S ∪ T,E) be a bipartite graph such that for all A ⊆ S, the
polygamy matching condition |N(A)| ≥ 2 · |A| holds. Show that there
exists a family of pairwise disjoint subgraphs of G that are isomorphic to
K1,2, such that each node from S is the center of one of these subgraphs
K1,2. (Hint: Consider the auxiliary graph G′, where for each node v ∈ S, another node v′ is

inserted, which has the same neighbors as v. Apply the standard matching theorem to G′.)
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2. A positional game consists of a game board, modeled by the set X =
{x1, . . . , xn} of squares, and so-called winning sets, modeled by subsets
W1, . . . ,Wm ⊂ X. For example, Tic-Tac-Toe is a positional game with
a game board of 9 squares and 8 winning sets (the vertical, horizontal,
and diagonal lines). Two players take turns selecting squares from X. The
player who first selects all squares from a winning set wins. Consider a
positional game with the property that each winning set consists of at
least 10 squares, and each square of the game board lies in at most 5
winning sets. Show that the second player can always achieve at least a
draw. (Hint: Show there exists a set of disjoint pairs of squares such that each winning set

contains at least one of these pairs, and use it to determine a strategy for the second player.)
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Discrete Mathematics – Solutions Sheet 3

Exercise 1 [Perfect matchings]

1. A matching covers an even number of vertices (that is 2#M), so if n is
odd, there exists no matching that covers every vertex. If n is even, then
M =

{
(2i)(2i+1) ; i ∈ {1, . . . , n

2 }
}
is a perfect matching (you shall draw

it).

2. The edges in a matching in Kn,m = (A ∪B,E) select a left vertex (in A)
and a right vertex (in B), hence if M is perfect, then every vertex in A is
matched with a vertex of B, that is to say n = |A| = |B| = m. Conversely,
if n = m, then write A = {a1, . . . , an} and B = {b1, . . . , bn}, and take
M =

{
aibi ; i ∈ {1, . . . , n}

}
.

3. A perfect matching of Kn,n is equivalent to a bijection σ of {1, . . . , n}
by setting σ(i) = j for ij ∈ M . Hence, there are the number of perfect
matchings as bijections of {1, . . . , n}, i.e. permutation: there are n! perfect
matchings of Kn,n. For n = 3, there are 3! = 6 perfect matchings of K3,3

(you shall draw them).

4. Fix a perfect matching M . Bob strategy is the following: when Alice plays
the vertex u, there exists a (unique) vertex vu such that uvu is an edge
of the matching M (whatever u, as M is perfect), then Bob plays vu. We
need to prove that it is always possible for Bob to play, whatever vertex
Alice chooses, that is to say prove that vu has no been played before (vu
is indeed a neighbor of u in G because the matching ensures it). Suppose
that is not the case: vu has been played before. Can Bob have played
it? No because Bob only plays edges from the matching, so Bob plays
vu only when u is played (and u has not been played before). Can Alice
have played it? No because if Alice plays vu, then Bob plays u (and it is
Alice’s turn), and u have not been played before. Hence, whatever Alice
plays, Bob can answer, and as the graph is finite, Alice will run out of
possibilities and loose at some point.

Exercise 2 [Trail partition and balloon sculpture]

1. 1 balloon is equivalent to an Eulerian edge-path. Hence, being made of
1 balloon is equivalent to being path-Eulerian. According to the lecture,
this is equivalent to having exactly 2 vertices of odd degree. As this is the
case of the dog graph, it can be made of 1 balloon.

2. Each balloon is a sub-graph of G with exactly 2 vertices of odd degree.
The degree of a vertex v of G is the sum of the degree of v in each balloon,
so if its degree is odd, then it has an odd degree in at least 1 balloon (if it
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were even in every balloon, then it will be even in G). Hence, the number
of vertices with odd degree can not exceed the number of endpoints of
balloons: m ≤ 2k. Note that the converse is true but more complicated to
show: if G has 2k vertices of odd degree, then it can be made of k balloons.

3. See Figure 5. The tetrahedron (left) can be made of 2 balloons: it can not
be made of 1 balloons because it has > 2 odd vertices, and the figure show
how to do it with 2 balloons. The octahedron (right) is Eulerian because
it has no odd vertices, the figure indicates how to order edges.

You can do the exercise on the graphs of the two other Platonic solids,
given below.

1

2

3

45

6
7

8

9

10

11

12

Abbildung 5: Solution to balloon problem

Abbildung 6: The dodecahedral graph and the icosahedral graph. (Good luck!)

Exercise 3 [Degree sequences in Trees]

(i) Let d1, . . . , dn be given with
∑n

i=1 di = 2n − 2. We prove the assertion
by induction on n. If n = 2, then (1, 1) is the only possible sequence
that satisfies the conditions, and the tree with 2 nodes and one edge has
exactly this degree sequence. Let n ≥ 3, there exists an i such that di < 2.
Otherwise,

∑n
i=1 di ≥ 2n would hold. Since di > 0 by assumption, we

have di = 1. On the other hand, there must also exist a j with dj >
1 (otherwise

∑n
k=1 dj ≤ n). Without loss of generality, let dn = 1 and
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dn−1 > 1. By the induction hypothesis, there exists a tree with degree
sequence d1, . . . , dn−2, dn−1−1. Adding a new leaf to the node n−1 yields
a tree with the degree sequence d1, . . . , dn.

(ii) Let V (T ) = {u1, . . . , u12} and let d(u12) = 2, d(u9) = d(u10) = d(u11) = 3.
According to the lecture,

12∑
i=1

d(ui) = 2 · |V (T )| − 2 = 22.

Since
∑12

i=9 d(ui) = 11 by assumption, it follows that

8∑
i=1

d(ui) = 11.

Furthermore, we know that d(ui) ∈ {1} ∪ {a : a ≥ 4}. Therefore, there
must exist a node ui with d(ui) ≥ 4 (otherwise

∑8
i=1 d(ui) ≤ 8). On

the other hand, there cannot be a node with degree at least 5, otherwise∑12
i=1 d(ui) ≥ 7 + 5 = 12. Thus, there exists a node with degree 4 and

without loss of generality, let d(u8) = 4. Then
∑7

i=1 d(ui) = 7, and since
all degrees are at least 1, we must have d(u1) = . . . = d(u7) = 1. Therefore,
the degree sequence is (1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4).

(iii) The degree sequence does not uniquely determine the tree. The following
illustration shows two non-isomorphic trees with the same degree sequence
(the one from above) (the vertex of degree 2 is adjacent to the vertex of
degree 4 in the right tree and not in the left tree).
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Exercise 4 [Making non-Eulerian graphs Eulerian]

1. By the hand-shaking lemma:
∑

v∈V (G) dv = 2#E, so there is an even
number of terms which are odd in the sum, i.e. the number of odd-degree
vertices of G is even.
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2. As G is not Eulerian, it has at least 1 odd-degree vertex. Let u1, . . . , u2k

be the odd-degree vertices of G (but the previous question, we know there
are an even number of them). Consider the graph H formed by G together
with an additional vertex v◦, and the edges uiv◦ for all i ∈ [2k]. All the
vertices of this new graph H are of even degree: the even-degree vertices
of G are still of even degree in H; the odd-degree ones have gained 1 edge;
and v◦ as degree 2k. Hence, H is Eulerian.

3. We will prove that: all non(path-Eulerian graphs G can be made path-
Eulerian by adding 1 vertex and some edges. As previously, consider H
obtained by adding v◦ and all the edges uiv◦ for ui and odd-degree vertex
of G. We know that H as 0 odd-degree vertex, we want that it has 2
odd-degree vertices, in order to be path-Eulerian. If G has an even-degree
vertex w, add to H an edge wv◦, and you are done. If G has an odd-degree
vertex u1, remove from H the edge u1v◦, and you are done (note that H is
still connected because if G has an odd-degree vertex, then it has at least
2 because the number of odd-degree vertices is even).

4. Let Godd be the graph whose vertex set is the set {u1, . . . , u2k} of odd-
degree vertices ofG, and whose edges are all the edges ofG of the form uiuj

(this is called the the sub-graph of Ginduced on its odd-degree vertices).
We will prove that: G can be made Eulerian by removing k edges if and
only if Godd admits a perfect matching. Suppose Godd admits a perfect
matching: Removing from G the edges of the perfect matching reduces
the degree of each odd-degree vertex of G by 1, hence the resulting graph
as only even-degree vertices and is Eulerian (and there are k edges in a
perfect matching). Conversely, if G can be made Eulerian by removing k
edges, consider the sub-graph G′ of G formed by these k edges. Note that
for each i ∈ [2k], the degree of ui in G′ is odd (you need to remove an
odd number of edges adjacent to ui in order to make it of even degree in
G). As every odd number is ≥ 1, and as there are 2k odd-degree vertices
but only k edges, the degree of ui in G′ is exactly 1. Thus, G′ consist of
isolated edges: it is a perfect matching between u1, . . . , u2k (i.e. a perfect
matching in Godd). N.B.: Note that k is the minimal number of edges one
can remove in order to make G Eulerian. In general, if you are allowed to
remove more than k edges, then the induce sub-graph Godd only need to
have a sub-graph with no vertex of even-degree, which is far more difficult
to check.

Exercise 5 [Bonus – Organizing a school trip]
One day of holding hands by pairs amount to a perfect matching in the complete
graph on 12 vertices. Hence, it uses 12

2 = 6 edges. In the complete graph, there

are
(
12
2

)
= 12×11

2 = 66 edges. Hence, if all the edges of all the perfect matchings
are different (which is the translation of the condition “we don’t want any child
to have the same neighbor twice”), there could be at most 66

6 = 11 perfect
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matchings: our trip cannot be more than 11 days long (in general for an even
number n of children, it cannot be more than 2

n

(
n
2

)
= n− 1 days long).

It remains to prove that we can indeed find 11 disjoint perfect matchings in
K12. Here is an example (each perfect matching is made of 6 edges):

1− 2 3− 12 4− 11 5− 10 6− 9 7− 8
2− 3 12− 4 11− 5 10− 6 9− 7 8− 1
1− 3 4− 2 5− 12 6− 11 7− 10 8− 9
3− 4 2− 5 12− 6 11− 7 10− 8 9− 1
1− 4 5− 3 6− 2 7− 12 8− 11 9− 10
4− 5 3− 6 2− 7 12− 8 11− 9 10− 1
1− 5 6− 4 7− 3 8− 2 9− 12 10− 11
5− 6 4− 7 3− 8 2− 9 12− 10 11− 1
1− 6 7− 5 8− 4 9− 3 10− 2 11− 12
6− 7 5− 8 4− 9 3− 10 2− 11 12− 1
1− 7 2− 12 3− 11 4− 10 5− 9 6− 8
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If the walk is done in rows of three, then there are 4 rows, and each day you
use 3× 4 = 12 edges of K12. Thus, your trip can last for at most ⌊ 6612⌋ = 5 days.
Good luck for finding a solution (write me a correct one, and I will add it here)!

Exercise 6 [With ChatGPT]
There are only 23 = 8 graphs on 3 (labeled) vertices. How can there be 25
bipartite ones?
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Exercise 7 [Number of perfect matchings]

Exercise 8 [Adjacency matrix – again]
What needs to be understood is the action that the adjacency matrix A has on
the graph. First, a vector v ∈ Rn+m is just a weight on the vertices (i.e. one can
draw the graph and write the coordinates of v directly on the vertices), and Av
is also a vector: the value of Av on a vertex u is the sum of the values of v on
the neighbors of u.

1. Take xi ∈ Rn+m with coordinated xi
a1

= 1 and xi
ai

= −1 for i ̸= 1, and
vα = 0 if α /∈ {a1, ai} (especially if α = bj). Then An,mxi = 0. This works

for all i ∈ {1, . . . , n}, and by symmetry, for yj with yjb1 = −yjbj = 1 and 0

else, for j ∈ {1, . . . ,m}. We get (n− 1) + (m− 1) vectors in the kernel of
A. All these vectors are linearly independent because they are echelonized
(write xi and yj as columns of a matrix: there is an identity matrix of full
rank inside).

2. The graph Kn,n is regular, so take z ∈ R2n with zai = zbj = 1, then
Az = n z. Take t ∈ R2n with tai = 1 and tbj = −1, then At = −n t. The
spectrum of An,n is {−n, 0,+n}, the eigenvalues n and −n have multipli-
city 1 (their eigenvectors being z and t respectively), and the eigenvalue 0
has multiplicity 2n− 2 (an eigenbasis of its eigenspace being given by the
vectors xi and yi for i ∈ {1, . . . , n}). As we have found a total multiplicity
of 1 + 1 + (2n− 2) = 2n, which is the size of the matrix An,n, we have a
diagonalization.

3. The coordinate of Av on the vertex ai is the sum of the coordinates of
v on the neighbors of ai. As Kn,m is complete, the neighbors of ai are
(b1, . . . , bm), which does not depend on i. Hence, the coordinate of Av on
the vertex ai does not depend on i: it is

∑
j vbj .

4. If v ∈ Rn+m is an eigenvector of An,m associated to a non-zero eigenvalue,
then An,mv = λv for some λ ̸= 0. In particular, all the coordinates of
An,mv on the vertices ai are the same (according to the previous question),
so as λ ̸= 0, all the coordinates of v on ai are the same: we denote
it α. Similarly, all the coordinates of v on bj are the same: we denote
it β. Looking at the coordinate on a1 in the equality An,mv = λv, we
get mβ = λα; while looking at the coordinate on b1, we get nα = λβ
(remember that we are trying to know if λ, α and β can exist, while n
and m are fixed, and n ̸= m, λ ̸= 0). If α = 0, then λβ = 0, which is
not possible (λ ̸= 0 by hypothesis, and if β = 0, then v = 0 but v is an

eigenvector). Thus, λ = β
αm, so nα = λβ gives n

m =
(

β
α

)2
. Finally, one can

check that taking (α, β) = (+
√
n,+
√
m) or taking (α, β) = (−

√
n,+
√
m)

gives two different (and linearly independent) eigenvectors with eigenvalue
λ =

√
nm. The matrix An,m is diagonalizable because we have found

eigenvalues with multiplicity adding to 2n, the size of the matrix.
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Exercise Sheet 4

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Hamiltonian Graphs]

Abbildung 7: The dodecahedral graph and the icosahedral graph.

1. In 1857, Sir William Rowan Hamilton invented the game The Icosian
Game. The task was to find a Hamiltonian cycle of the graph G in Figu-
re 7 (Left). Show that both graphs of Figure 7 have a Hamiltonian cycle
(draw it in color).

2. Let Qn denote the hypercube graph. Decide for which n the graph Qn is
Eulerian. Decide for which n the graph Qn is Hamiltonian. Recall that: The

hypercube graph Qn has vertices all the subsets of {1, . . . , n}, and the edges are between X

and Y if X ⊆ Y and |Y | = |X| + 1.

Exercise 2 [Optimality of Dirac’s Theorem]

1. Construct a graph G = ([5], E) with d(i) ≥ 2 for all i ∈ [5], which does
not contain a Hamiltonian cycle.

2. Construct, for any n ∈ N, a graph with n vertices and 1 +
(
n−1
2

)
edges

that is not Hamiltonian.
3. Construct, for any n ∈ N, a graph with n vertices and minimum degree⌈

n
2

⌉
− 1 that is not Hamiltonian.
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Exercise 3 [Ore’s theorem]
We want to prove the following theorem (Ore, 1960): if, for every non-adjacent
vertices u and w of G we have d(u) + d(w) ≥ n, then G is Hamiltonian, where
d(u) is the degree of u in G.

1. Prove that the reciprocal of Ore’s theorem is false. Hint: 5 vertices are enough.

2. Write the contrapositive of Ore’s theorem. This is what we will prove.
3. Let H = (V,E) be a maximally non-Hamiltonian graph on n vertices (i.e.

adding any edge to H would create an Hamiltonian cycle).
(a) If u and w are not adjacent in H, prove that there is a Hamiltonian

path (v1, v2, . . . , vn) with v1 = u and vn = w.
(b) For i ∈ {2, . . . , n− 2}, proves that if uvi+1 ∈ E, then viw /∈ E.
(c) Deduce that d(u) + d(w) ≤ n− 1.

4. Prove Ore’s theorem (by proving its contrapositive): take G and add edges
to it to get a maximally non-Hamiltonian graph H, and conclude.

Exercise 4 [Chinese postman problem]
Kwan Mei-Ko in 1960, asked the following problem: in the city of Guan, a
postman needs to deliver mails to citizens in every streets; how to minimize the
number of street in which he needs to pass twice? (this is not a quote but a
reformulation). A city can be seen as a graph whose vertices are the crossroads
(intersections between streets, dead-ends are not taken into account), and the
edges are between the crossroads which belong to the same street. The postman
delivers mails by following a trail (in this graph) which comes back at its starting
point.

1. A city is a US city when every two intersecting streets meet at a 90◦ angle,
and there is no dead-end. Show that in US cities, the postman does not
need to pass by any street twice.

2. Suppose Osnabrück city has only 2 crossroads of odd degree in its graph
G = (V,E), namely u and v. Let d be the distance between u and v. Show
that the postman can deliver the mails by using twice k edges, with k ≤ d.

3. We want to show that k = d in Osnabrück. Consider a possible trail of the
postman, let E′ by the edges he uses twice, and G′ = (V,E′) the sub-graph
obtained.
(a) Show that for any w ∈ V with w /∈ {u, v}, the degree d′(w) of w in

G′ is even.
(b) Suppose u and v are not in the same connected component of G′, use

the degree formula to obtain a contradiction.
(c) Deduce that |E′| ≥ d and conclude.

Exercise 5 [Bonus – Playing chess]
Can a Rook go through all squares of a 8× 8 chessboard exactly once and come
back to its starting point? If yes, draw how.

Can the King or the Queen do it? Can a Bishop starting on a black square
go through all black squares exactly once? Can a Knight go through all squares
of a 5× 5 chessboard exactly once and come back to its starting point?

Submission: 21.05.2024 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):

“ We construct a simple graph G on n = 6 vertices such that:

• G has no Hamiltonian cycle,

• G has two non-adjacent vertices u, v with deg(u) + deg(v) ≥ 6,

• G has the minimal possible number of edges among such graphs.

Construction The graph has 6 vertices and 7 edges. The edges are:

{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 4}, {3, 5}

Vertices 2 and 5 are non-adjacent and satisfy deg(2) = 3, deg(5) = 3, so their
degree sum is 6.

1

2

3

4

5

6

Abbildung 8: A graph with no Hamiltonian cycle, satisfying deg(2)+deg(5) = 6

Justification The graph contains no Hamiltonian cycle: any attempt to in-
clude all vertices in a cycle fails due to forced backtracking or revisiting a vertex.

Moreover, the non-adjacent pair (2, 5) satisfies the degree sum condition:
deg(2) + deg(5) = 3 + 3 = 6 = n.

The graph has only 7 edges, which is minimal among all such graphs satis-
fying the condition. ”

This is false, why?

Exercise 7 [Who is Hamiltonian?]
Which of the following graph is Hamiltonian, which is Eulerian, which has an
Hamiltonian path, which has an Eulerian path?
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Exercise 8 [Eulerian vs Hamiltonian]
For each following sentence, give an example or show that such a graph can not
exist:

1. A graph that is Eulerian but not Hamiltonian.
2. A graph that is Hamiltonian but not Eulerian.
3. A graph that has an Eulerian path but no Hamiltonian path.
4. A graph that has an Hamiltonian path but no Eulerian path.
5. An Hamiltonian graph with at least 3 vertices, and a bridge.
6. A graph with at least 3 vertices, a bridge, and an Hamiltonian path.

Exercise 9 [Line graph]
For a graph G = (V,E), its line graph L(G) is the graph whose vertex set is E
and whose edges are between edges of G that share a common vertex.

1. For some graphs of your choice, draw the corresponding line graph (e.g.
path, cycles, complete graph, bipartite complete graph, etc). Find a graph
G such that G ̸= L(L(G)), and a graph G with L(G) = G.

2. Show that if G is Eulerian, then L(G) is Hamiltonian.
3. For an edge uv of G, let euv be the corresponding vertex of L(G). Express

dL(G)(euv) in term of dG(u) and dG(v). Recall: dH(x) is the degree in the graph

H of the vertex x.

4. Show that if G is Eulerian, then L(G) is Eulerian.
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5. Give an example of a graph G which is not Hamiltonian nor Eulerian, but
for which L(G) is Eulerian.

Exercise 10 [Partitioning into Hamiltonian cycles]
Let G be the graph with vertex set {1, . . . , n} and edges uv if |u−v| ∈ {1, 2, n−
1, n− 2} (called the circulant graph Circ(n; 1, 2)). Show that the vertices of G
can be partitioned into 2 Hamiltonian cycles.

Exercise 11 [Product graph]
For two graph G = (V,E) and G′ = (V ′, E′), the product G□G′ is the graph
with vertex set V × V ′ = {(v, v′) ; v ∈ V, v′ ∈ V ′} and edges (u, u′)(v, v′) if
(u = v and u′v′ ∈ E′) or (uv ∈ E and u′ = v′).

1. How many edges are there in G□G′

2. Show that K2□K2□ . . .□K2 is isomorphic to Qn (there are n copies of
K2).

3. Show that there exists G and H, both Eulerian, such that G□H is not
Eulerian.

4. Show that if G and H are Hamiltonian, then G□H is Hamiltonian.
5. Let T be a tree. Show that if G□T is Hamiltonian, then |V (G)| ≤ ∆(T )

(recall : ∆(T ) is the maximum degree of T ).
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Discrete Mathematics – Solutions Sheet 4

Exercise 1 [Hamiltonian graphs]

1. Figure 9 shows a Hamiltonian cycle in both graphs

Abbildung 9: Exercise 1(i)

2. • The hypercube graph Qn is a regular graph with d(v) = n for all
v ∈ V . From the theorem on Eulerian cycles in the lecture, it follows
that a connected graph G is Eulerian if and only if every vertex of G
has even degree. Therefore, Qn is Eulerian if and only if n is even.

• The hypercube Qn = (V,E) is Hamiltonian for every n ≥ 2. We
prove the claim by induction. Since Q2 is the cycle with 4 vertices,
the case n = 2 holds. Let n ≥ 3. Suppose Qn−1 is Hamiltonian.
We partition the set V (Qn) = V1 ·∪V2 into two disjoint sets V0 :=
{(u1, . . . , un) : ui ∈ {0, 1}, un = 0} and V1 := {(u1, . . . , un) : ui ∈
{0, 1}, un = 1}. We note that the induced graphs G1 = (V1, E∩

(
V1

2

)
)

and G2(V2, E ∩
(
V2

2

)
) are isomorphic to Qn−1.

By the induction hypothesis, G1 has a Hamiltonian cycle

H1 = x1x2 . . . xm−1xmx1,

and G2 has a Hamiltonian cycle

H2 = y1 . . . ym−1ymy1,
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with xi = (v1, . . . , vn−1, 0) and yi = (v1, . . . , vn−1, 1) for all i =
1, . . .m. (Here m = 2n−1, but we do not need that.). In particular,
xiyi ∈ E for all i = 1, . . .m. Therefore,

x1x2 . . . xm−1xmymym−1 . . . y1x1

is a Hamiltonian cycle of Qn.

Exercise 2 [Optimality of Dirac’s theorem]

1. Variant 1: We notice that a graph with an articulation point does not have
a Hamiltonian cycle. Figure 10 shows the only such graph that satisfies
the given conditions.

Abbildung 10: Exercise 1(ii), Var. 1

Variant 2: We observe that 6 ≤ |E| ≤ 10 (|E| = 5 gives G = C5; cycles are
Hamiltonian, |E| < 5 and minimum degree 2 does not work).

We consider |E| = 6, then
∑5

i=1 d(i) = 12. So the following cases are
possible:

a) There is a degree 4 node and 4 of degree 2,

b) There are 2 degree 3 nodes and 3 of degree 2.

a) leads to the graph from Variant 1.
In case b) we consider that the degree 3 nodes cannot be adjacent (other-
wise there is a Hamilton cycle). Thus, the graph remains as shown in
Figure 11. It is easy to see that this does not contain a Hamilton cycle.

Abbildung 11: Exercise 1(ii), Var. 2
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2. Let G be the complete Kn−1 graph, to which an additional vertex v is
added, connected to exactly one vertex of Kn−1. Then G has exactly(
n−1
2

)
+ 1 edges. Since v does not lie on any cycle, G does not have a

Hamiltonian cycle.

3. Let G1 be a complete graph on
⌈
n
2

⌉
vertices, and let G2 be a comple-

te graph on
⌊
n
2

⌋
vertices, disjoint from G1. Let u ∈ V (G1) be a vertex

connected to all vertices in G2. The resulting graph has minimum degree⌈
n
2

⌉
− 1 and is non-Hamiltonian, as at least 4 edges incident to u would

need to be used.

Exercise 3 [Ore’s theorem]

1. The cycle of length n = 5 is Hamiltonian, but for any two non-adjacent
vertices u and v, we have d(u) + d(v) = 4 < n. Hence the reciprocal is
false.

2. The contrapositive of Ore’s theorem is : If G is not Hamiltonian, then there
exists two non-adjacent vertices u and v such that d(u) + d(v) ≤ n− 1.

3. (a) As H is maximally non-Hamiltonian, add any edge will create an
Hamiltonian cycle, so adding the edge uw creates an Hamiltonian
cycle (v1, v2, . . . , vn, v1) with v1 = u and vn = w. Removing back
the edge uw yields an Hamiltonian path in H : (v1, v2, . . . , vn) with
v1 = u and vn = w.

(b) Suppose both uvi+1 and wvi are edges of H. A quick drawing (please,
do the drawing!) show that (u, v2, . . . , vi, w, vn−1, . . . , vi+1, u) is an
Hamiltonian cycle in H. As we know H is not Hamiltonian, one of
the edges uvi+1 or wvi does not exist.

(c) According to the previous question:
(
the total number of edges of

the form uvi for i ∈ 3, . . . , n− 1
)
+
(
the total number of edges of the

form wvi+1 for i ∈ 2, . . . , n− 2
)
is at most #{2, . . . , n− 2} = n− 3.

Taking into account the edges uv1 and wvn−1 (and remembering
there is no edge between u and w), we get d(u) + d(w) ≤ n− 1.

4. As we have added edges in G to obtain H, the degree dG(v) of a vertex v
of G is smaller than its degree dH(v) in H, i.e. dG(v) ≤ dH(v). According
to the previous question, there exists two non-adjacent vertices u and w
in H (which implies there are also non-adjacent in G) such that dH(u) +
dH(w) ≤ n − 1. Consequently dG(u) + dG(w) ≤ dH(u) + dH(w) ≤ n − 1.
This proves that Ore’s theorem holds, as this is its contrapositive.

Exercise 4 [Chinese postman problem]
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1. In a US city, all vertices have degree 4 (because exactly 4 streets meet
at a given crossroad, as they meet at 90◦ angle). Thus, all vertices of the
graph are of even degree, which implies there exists a Eulerian cycle (see
the lecture): following this Eulerian cycle, the postman can deliver mails
in evrey streets without passing twice in the same street.

2. According to the theorem from the lecture, there exists a Eulerian path
in Osnabrück city that starts at u and ends at v. Moreover, by definition,
there exists a path P of length d from u to v. Following the Eulerian path,
and then the path P, the postman will visit every streets and then come
back to its starting point by visiting a second time exactly d streets. So
the minimum number of streets he needs to visit twice is at most d.

3. (a) In the trail that the postman follows, each time the postman enters
a vertex w, he gets out of this vertex, so the number of time the post
passes in a street adjacent to the vertex w is even. This number is
d(w) + d′(w), the sum of the degree of w in G and its degree in G′.
Hence, except u and v, the degree of all vertices of G′ is even (because
it is also even in G).

(b) According to the degree formula: 2|E| =
∑

v∈V d(v) for a connected
graph G = (V,E). Consequently, the number of vertices of odd degree
in a connected graph (or in any connected component of a graph) is
even. As u and v are the only odd vertices of G′, they can not be
in different connected components (otherwise each of their connected
component would have exactly 1 vertex of odd degree, and 1 is not
even!).

(c) As u and v are in the same connected component of G′, there is a
path linking them. The length of this path is ≥ d because it is also a
path in G (so especially it is longer than the shortest path between
u and v in G). Hence the number of edges of G′ is greater than d,
i.e. |E′| ≥ d. Finally, the postman can deliver all the mails by using
exactly d edges twice, and whatever he does, he can not use less.

Note that if your favorite city as more than 2 vertices of odd degree, then
to solve the Chinese postman problem, one should go through all matchings
between vertices of odd degree, and for each compute how many edges needs to
be repeated if the postman walks between the match vertices.

Exercise 5 [Bonus – Playing chess]
Theses questions are about finding an Hamiltonian cycle on certain graph. The
graph associated to a piece of chess has for vertices the squares of the chessboard,
and edges between square the piece can go to without passing over another
square.

Let’s do the easiest first: the Bishop can not make it because of the corners
(which are isthmuses of the graph of the squares he can attain).

The Rook, the Queen and the King can make it because their graph contains
a grid., see Figure 12.
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Abbildung 12: Hamiltonian cycle of Rooks, Queens and Kings.

The Knight can not make it on a 5 × 5 chessboard. Indeed, at each move-
ment, the color of the square on which the Knight is changes. Consequently, if
the Knight starts on a white square, then it will be after an odd number of moves
is black. There are 25 squares to go through, so 25 moves to do: a Knight can not
finish on the same square that it has started on, because its starting and ending
squares are of different colors. The Knight can make it on a 8×8 chessboard, ho-
wever, and on a lot of grids, see https://en.wikipedia.org/wiki/Knight%27s tour.

Exercise 6 [With ChatGPT]
Remove the edge 3–4, and you get a graph with less edges, still no Hamiltonian
cycle (because the vertex 6 is of degree 1), and deg(2) + deg(5) = 6. This new
graph has 6 edges, which is indeed the minimum: as you need deg(u)+deg(v) ≥ n
and u and v are not adjacent, then there are at least deg(u)+deg(v) edges (thus
at least 6 in our case).

Exercise 7 [Who is Hamiltonian?]
Petersen Herschel Pappus Dürer

Hamiltonian ✗ ✗ ✔ ✔
path Hamiltonian ✔ ✔ ✔ ✔
Eulerian ✗ ✗ ✗ ✗
path Eulerian ✗ ✗ ✗ ✗

For (path) Eulerian: each graph as more than 3 vertices of odd degree.
For Hamiltonian, look at the Wikipedia page of each graph.

Exercise 8 [Eulerian vs Hamiltonian]

1. Take two triangles glued at a vertex (5 vertices, 6 edges): it is Eulerian
but not Hamiltonian.
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2. You have 2 examples in the previous exercise.

3. Take three triangles K3 on {1, 2, 3}, on {a, b, c} and on {x, y, z}, and add
two edges 1–a and a–x (9 vertices, 11 edges): it is path Eulerian but not
path Hamiltonian.

4. You have 4 examples in the previous exercise.

5. Impossible, see the lecture notes.

6. Take G = Pn a path on n vertices: it has n− 1 bridges, and yet it has an
Hamiltonian path (itself).

Exercise 9 [Line graph]

1. Take G = P3 the path on 3 vertices. It has 2 edges, and L(P3) has 2
vertices and 1 edge, thus L(L(P3)) has 1 vertex and no edge. Consequently
P3 ̸= L(L(P3)). For G = K3, we have L(K3) = K3.

2. By definition, an Eulerian cycle in G is a cycle that goes through every
edge of G once (and go back at the first edge it began with), such that
consecutive edges share a vertex. Hence, following an Eulerian cycle corre-
spond to following a cycle in the line graph L(G) that goes through every
edges of G, i.e. every vertices of L(G) once.

3. euv is adjacent exactly to the edges of the form euw for w a neighbor of u
in G (with w ̸= v), and to evw for w a neighbor of v in G (with w ̸= u).
Thus dL(G)(euv) = (dG(u)− 1) + (dG(v)− 1) = dG(u) + dG(v)− 2.

4. If G is Eulerian, then dG(u) is even for every vertex u of G. Hence,
dL(G)(euv) = dG(u) + dG(v) − 2 is even for all uv ∈ E. Thus, L(G) is
Eulerian as all its vertices have even degree.

5. K1,3, the star with 1 vertex at the center connected to other 3 vertices, is
not Eulerian nor Hamiltonian. L(K1,3) = K3 is the complete graph on 3
vertices: it is both Eulerian and Hamiltonian.
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Tarek Emmerich

Discrete Mathematics – Summer Semester 2025

Exercise Sheet 5

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [2-Connectivity]
Let G = (V,E) be a minimally 2-connected graph, i.e., G is 2-connected and for
every edge e ∈ E, G \ e = (V,E \ {e}) is not 2-connected.

1. Show that, in a 2-connected graph, every edge is contained in a cycle.
2. Show that a minimally 2-connected graph G has a vertex of degree 2.
3. Show that every 2-connected sub-graph H of a minimally 2-connected

graph G is minimally 2-connected.

Exercise 2 [Edge and vertex connectivities]
Reminder: A graph G = (V,E) is said to be ℓ-edge-connected if
• |V | > 1,
• G \ F is connected for all F ⊆ E with |F | < ℓ.

Denote λ(G) = max{ℓ : G is ℓ-edge-connected} the edge connectivity of G.
Furthermore, denote κ(G) the (vertex) connectivity.

1. Show that κ(G) ≤ λ(G). (Hint: One possible approach is to use induction on λ(G).)

2. Find a graph with κ(G) < λ(G) < ∆(G). Recall: ∆(G) is the maximum of the

degrees of the vertices of G.

Exercise 3 [Graph toughness]
For a given real number t, a graph G is t-tough if, for every integer k > 1, G
cannot be split into k different connected components by the removal of strictly
less that tk vertices. The toughness τ(G) of a graph G is the maximum (or
supremum, more generally) t such that G is t-tough.

1. What is the toughness of the path Pn?
2. What is the toughness of the cycle Cn?
3. Show that if G is not the complete graph, then τ(G) ≤ ∆(G).
4. Show that if a spanning sub-graph H of G is t-tough, then G is t-tough.

Deduce that τ(G) ≥ maxH τ(H) where the maximum is on all spanning
sub-graph H of G. Find an example were τ(G) ̸= maxH τ(H).

5. Show that if G is Hamiltonian, then G is 1-tough.
6. Show that if G is t-tough, then G is 2t-vertex-connected.
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Exercise 4 [Blocks and cut-points]
A cut-point in a connected graph G is a vertex v whose deletion disconnects G.
A block B in a connected graph G is a maximal induced sub-graph of G (with
at least 2 vertices) with no cut-point (B can contain a cut-point of G). Recall: an

induced sub-graph of a graph G = (V,E), is a graph on vertex set X ⊆ V with edges all the edges

between the vertices of G that lie in X.

1. Show that a block is either 2-connected or it is an edge.
2. Let B1, . . . , Bm be the blocks of G, with E1, . . . , Em their edges. Show that

E = E1 ·∪ . . . ·∪Em. Recall: A ·∪B is the disjoint union, that is A ∪ B with A ∩ B = ∅.

3. If G is connected, show that v is a cut-point of G if and only if v belongs
to (at least) two blocks of G.

4. For a graph G, with cut-points c1, . . . , cr and blocks B1, . . . , Bm, the block-
cut-point graph of G is the graph BC(G) with vertex set
{c1, . . . , cr} ·∪{B1, . . . , Bm} and edges ciBj if and only if ci ∈ Bj . Show
that if G is connected, then BC(G) is a tree.

Exercise 5 [Bonus – Menger theorem on an infinite graph]
During a rainy afternoon, looking for some surprising exercise on Menger theo-
rem, you open a math text book, and you see Figure 13.

In Γ∞ = (V,E), show that for all finite X ⊊ V , there exists a path from
a ∈ A to b ∈ B with no vertex in X. Show that it is impossible to find infinitely
many disjoint paths that start in A and end in B. Comment this fact in regards
of Menger theorem.

Submission: 28.05.2025 before 23:59
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Abbildung 13: A surprising figure from an imaginary math text book.
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):

“ Let Gn,n be the n×n grid graph. It has n2 vertices and is 2-connected for
all n ≥ 3. We are interested in counting how many unordered pairs of vertices
{u, v} exist such that removing both u and v disconnects the graph.

Key observations:

• Since Gn,n is 2-connected, removing a single vertex never disconnects the
graph.

• However, certain pairs of vertices do disconnect the graph. Such pairs are
called 2-vertex cutsets.

• The total number of unordered pairs of vertices is
(
n2

2

)
, but only a small

fraction of them are 2-vertex cutsets.

Conclusion: There is no known simple formula for the number of 2-vertex
cutsets in Gn,n. However, for n ≥ 3, such pairs always exist, and their number
grows with n, likely in the order of Θ(n2). This remains a challenging enume-
ration problem in graph theory and can be computed explicitly for small n via
exhaustive search. ”

This is false. Why?

Exercise 7 [Vertex connectivity and edge connectivity]
Determine the vertex-connectivity and the edge-connectivity of:

1. the path Pn

2. the cycle Cn

3. the complete bipartite graph Kn,m with n ≤ m
4. the hypercube Qn with n ≥ 1

Exercise 8 [Some properties implying being connected]

1. Show that if a graph on n vertices has at least (n−1)(n−2)
2 + 1, then it is

connected.
2. Let G = (V,E) be a graph with exactly two vertices of odd degree u and

v. Show that G′ = (V,E∪{uv}) is connected if and only if G is connected.
3. Let d1 ≤ d2 ≤ · · · ≤ dn be the degree sequence of G. Show that if dk ≥ k

and k ≤ n− dn − 1 for all k, then G is connected.
4. For a fixed n, find the smallest k such that the following holds: “For all

graph G on n vertices, if G ism-regular withm ≥ k, then G is connected.”.
5. Show that the complement of a disconnected graph is connected. Show

that the reciprocal is false. the complement of a graph G is the graph G on the same

vertex set, where uv is an edge of G if and only uv is not an edge of G.
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Exercise 9 [Edge connectivity split]
Let G = (V,E) be a graph with edge-connectivity λ(G) = k ≥ 1. Show that
there exists X,Y ⊆ V such that X ·∪Y = V and there are exactly k edges with
one endpoint in X and one endpoint in Y .

Exercise 10 [Connectivity and cycles]

1. Show that if G is k-connected with at least 2k vertices, then G contains a
cycle of length at least 2k.

2. Show that if G is k-connected, then any k vertices of G lie on a cycle (this
cycle is not necessarily of length k).

Exercise 11 [3-connectivity]
Show that every edge of a 3-connected graph lies on a non-separating induced
cycle. A cycle C of a graph G is induced if there is no edge in G between its vertices except from

the edge of C. A cycle is non-separating if G\C is connected.

Exercise 12 [Deletion and contraction]
If G is k-connected, and uv is an edge of G, show that G/uv is k-connected if
and only if G\uv is (k − 1)-connected. For G = (V,E), recall that G\uv = (V,E\{uv}),

and G/uv is the graph obtained by merging the vertices u and v of G into a single vertex (which is

adjacent to both the neighbors of u and the neighbors of v).
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Discrete Mathematics – Solutions Sheet 5

Exercise 1 [2-Connectivity]

1. Direct from the definition in the lecture notes.

2. By Theorem 7.3, we obtain G from a cycle by adding paths between two
existing vertices. If G is a cycle, then every vertex on it has even degree.
Otherwise, consider the last path added in the construction of G. If this
path has length at least 2, then there exists a vertex of degree 2. If not,
then the last addition was an edge, and its removal results in a 2-connected
graph. However, this contradicts the assumption that G was minimally 2-
connected.

3. Let H be a 2-connected subgraph of G. Suppose H is not minimal. Then
there exists an edge uv ∈ E(H) such that H \{uv} = (V (H), E(H)\{uv})
is 2-connected. However, by the assumption about G, there also exists a
vertex w such that G′ = G \ {uv} \ {w} is not connected. On the other
hand, H ′ = H \ {uv} \ {w} is 2-connected, implying that H ′ must be
contained in a connected component C of G′. Thus, H is a subgraph of
GV (C)∪{w}, and in particular, u, v ∈ V (C) ∪ {w}. However, this implies
that G \ {w} is not connected.

Exercise 2 [Edge and vertex connectivities]

• If λ(G) = 0, then G is not connected. It follows that κ(G) = 0.

• If λ(G) = 1, then there exists an edge uv such that G\ e is not connected.
If |V | = 2, then G ∼= K2 and κ(K2) = λ(K2) = 1. Otherwise, G \ u (and
G \ w) is not connected, and we have κ(G) = 1.

• If λ(G) = |V | − 1, then the minimum degree of G is also |V | − 1 (Proof:
Suppose there exists v with d(v) < |V | − 1. Then G \N is not connected,
where N = e ∈ E : v ∈ e). A graph G = (V,E) with minimum degree
|V | − 1 is isomorphic to K|V |, and κ(K|V |) = |V | − 1.

• Suppose 1 < λ = λ(G) < |V | − 1 and G \ {e1 . . . eλ} is not connected.
Let G1 = G \ eλ. We have λ(G1) = λ − 1. By the induction hypothesis,
κ(G1) ≤ λ(G1). Therefore, there exist vertices v1, . . . , vj with j ≤ λ − 1,
such that G2 = G1 \ {v1 . . . vj} is not connected. Since |V | > λ+1 > 2, G
has at least three vertices. Let ek = uv.

– If u, v ∈ V (G2) and G2 ∪ ek is connected, then (G2 ∪ ek) \ u =
G \ {v1 . . . vj , u} is not connected. It follows that κ(G) ≤ j + 1 ≤ λ.

– If u, v ∈ V (G2) and G2 ∪ ek is not connected, then G \ {v1 . . . vj} is
not connected. It follows that κ(G) ≤ j ≤ λ− 1 < λ.
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– If u /∈ V (G2) (or v /∈ V (G2)), then G2 = G \ {v1 . . . vj}. Since G2 is
not connected, it follows that κ(G) ≤ j ≤ λ− 1 < λ.

Exercise 3 [Graph toughness]

1. Removing a vertex that is not an endpoint in the path Pn split it into 2
connected components which are themselves paths (and it creates 2 new
endpoints). In order to split the path Pn into k connected components,
one need to remove at least k− 1 vertices (assuming that n > 2k). Hence,
Pn cannot be split into k different connected component by the removal
of < k − 1 vertices: if Pn is t-tough, then tk ≤ k − 1 for all k ≥ 2 Thus
τ(Pn) ≤ k−1

k for all k ≥ 2, and we deduce that τ(Pn) ≤ 1
2 . We also see

that Pn is 1
2 -tough. Hence the toughness of the path is τ(Pn) =

1
2 .

2. Removing any vertex of the cycle Cn maintain 1 connected component,
which is a path Pn. Hence, to split Cn into k connected components, one
needs to remove k vertices (or more). Hence the toughness of the cycle is
τ(Cn) = max{t ; ∀k ≥ 2, t ≤ k

k} = 1.

3. Suppose uv /∈ E, then the removal of all the neighbors of u and all the
neighbors of v (which is less than 2∆(G) vertices) will create κ ≥ 2 connec-
ted components (the one of u, the one of v, and maybe others). Conse-
quently, if t is such that G can not be split in κ connected connected com-
ponent by the removal of <tκ vertices, then tκ ≤ 2∆(G); which means
τ(G) ≤ ∆(G) (recall κ ≥ 2).

4. If H is a spanning sub-graph of G, and X ⊆ V , then note that H\X has
more connected components than G\X (because G contains all the edges
of H). If H is moreover t-tough, then for any X ⊆ V with |X| < tk, the
number of connected components of H\X is < k, and hence, the number
of connected components of G\X is < k. That means G is t-tough. As
τ(G) is the supremum of the t such that G is t-tough, we immediately
get τ(G) ≥ τ(H) for all spanning sub-graph H of G, and the maximum
follows. The complete graph satisfies τ(Kn) = +∞ (because Kn cannot
be split in k connected components by the removal of tk vertices, for
all t > 0), and any spanning sub-graph has finite toughness, so τ(G) ̸=
maxH spanning τ(H).

5. If G is Hamiltonian, then it has an Hamiltonian cycle, so Cn is a spanning
sub-graph of G. As Cn is 1-tough, G is 1-tough.

6. If G is t-tough, then, taking k = 2, we get that G cannot be split in 2
connected components (i.e. disconnected) by the removal of 2t vertices.
Hence, G is 2t-vertex-connected, by definition.

Exercise 4 [Blocks and cut-points]
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1. Edges and 2-connected graphs do not contain a cut-point. Conversely, if
G does not contain a cut-point, then let u and v be vertices of a block
B of G. If B is not an edge, then, as it has no cut-points, it can only be
disconnected by the removal of ≥ 2 vertices: B is 2-connected. For what
follows, we will take the convention that an edge is 2-connected.

2. Fix uv ∈ E, and consider the biggest X ⊆ V such that u ∈ X, v ∈ X,
and B := G |X (the sub-graph of G induced on X) is 2-connected. On the
one hand, uv is an edge of B. On the other hand, B contains no cut-point
(because it is 2-connected), and any Y with X ⊊ Y will give rise to G |Y
containing a cut-point (by maximality of X). Hence, B is a block of G.
We have proven that E = E1 ∪ · · · ∪ Em. To see that Ei ∩ Ej = ∅, just
note that if Bi and Bj intersect on (at least) an edge uv, then Bi ∪ Bj

can not be disconnected by removing 1 vertex (because there is no cut-
point in Bi\{u, v} nor in Bj\{u, v}, and the removal of u or of v does not
disconnect Bi∪Bj , as the other vertex ensures connectivity). This implies
that every edge sits in a unique, well-defined block.

3. If v belongs to two blocks B and B′, then if v is not a cut-point of G,
that implies B∪B′ has no cut-point, and hence is 2-connected: this would
contradicts the maximality of B and of B′. Thus v is a cut-point. Con-
versely, if v is a cut-point of G, suppose all its neighbors are in the same
block B. Then B\v is connected, hence all the neighbors of v can be pair-
wise connected by paths that avoid v. The removal of v in G does not
disconnect the graph. This contradiction shows that v belongs to at least
two blocs.

4. If G is connected, then BC(G) is connected because the construction of
BC(G) amounts to replacing each block by a vertex connected to all the
cut-points this block contains, which does not infringe the connectivity
of G. Take a connected sub-graph of BC(G), encapsulating the blocks
B1, . . . , Br, and let X =

⋃
i Bi. Then G |X is connected, indeed each G |Bi

is connected, and if Bic and Bkc are edges of BC(G), then G
∣∣
Bi∪Bj

is

connected (because G |Bi and G
∣∣
Bj intersect on c). Suppose BC(G) has a

cycle, and let B be the union of the blocks appearing in this cycle, and let
v ∈ B. We prove that B\v is connected. If v is not a cut-point, then v is
inside a block and does not disconnect the cut-points of this block, hence
B\v is connected. If v is a cut-point, then the block-cut-point graph of
B\v is obtained from BC(B) by removing v, hence it is connected, and so
is B\v. Consequently, BC(G) is a tree (a connected graph without cycle).

Exercise 5 [Bonus – No Menger theorem for infinite subsets]
The graph Γ∞ has infinitely many vertices and infinitely many edges. However,
note that each vertex belongs to finitely many edges. Let enumerate the vertices
in A from right to left a1, a2, a3, . . . , and the vertices of B from left to right
b1, b2, b3, . . . . For each n, consider the path Pn from an to bn defined by following
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3 line segments, the vertical one starting at an, going down vertically (to the
only neighbor of an), then going horizontally right until being at the vertical of
bn, and then going down to bn. Each vertex of Γ∞ belongs to finitely many paths
Pn. Hence, for any finite X ⊊ V , there is a path Pn that avoids all vertices in
X : no finite vertex subset X separate A from B.

On the other hand, consider a collection of disjoint paths (Qj)j from A to
B. Note that Qj is not necessarily of the form Pn described above. Let b be the
leftmost endpoint of some Qj in B, and a ∈ A the other endpoint of Qj . Suppose
there is a path Qi whose endpoint in A is on the left of a. By construction of
b, the endpoint of Qi in B is on the right of b : that means Qi intersects Qj , so
they are not disjoint. Hence, a is the leftmost endpoint present among all Qj ,
which implies there are finitely many different Qj (at most k such that a = ak).

Menger theorem ensure that, in a finite graph G, the number of disjoint
paths between two vertices u and v is the same as the number of vertices that
one needs to remove in order to separate u from v. This also works if one takes
subsets of the vertices : for A,B ⊆ V , the number of disjoint paths with one
endpoint in A and one in B is the same as the number of points needed to remove
in order to separate A from B. We have just seen that, in infinite graphs, this
property does not hold, as Γ∞ is a counter-example.

Exercise 6 [With ChatGPT]
Due to the properties of the grid graph, the only way to disconnect Gn,n by
removing exactly two vertices is to take pick a corner v of Gnn (i.e. a vertex with
exactly 2 neighbors), and to remove its 2 neighbors. As Gn,n has 4 corner, there
are precisely 4 ways to disconnect Gn,n by removing two vertices. ChatGPT
told there are Θ(n): this is utter bullshit.
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For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Kuratowski’s Theorem]

1. Which of Herschel, Dürer, and Petersen graphs are planar, and why? (Hint:

consider removing the dotted edges in the Petersen graph.)

2. Decide for which m,n > 0 the following graphs are planar:
(a) complete graph Kn

(b) complete bipartite graph Km,n

(c) hypercube graph Qn

3. Let G = (V,E) be a minimal non-planar graph: Does there exist an edge
e ∈ E such that G \ e is maximal planar? Minimal non-planar : for all e ∈ E,

G \ e is planar. Maximal planar : for all e /∈ E, adding e to G makes it not planar.

•

•

•
•

•

•

•

•

•
•

Petersen graph

• •• ••

•

•

••

••

Herschel graph

• •

•

•

•

•

••

•

•

•

•
Dürer graph

Exercise 2 [Euler’s Formula]
Let G be a connected planar graph with minimum degree at least 3. Let vi be
the number of vertices of G with degree i. Show that if G is a triangulation, i.e.,
in a planar drawing, each face is bounded by 3 edges, then (with δ the maximum
degree):

3v3 + 2v4 + v5 = v7 + 2v8 + 3v9 + · · ·+ (δ − 6)vδ + 12

Exercise 3 [Triangulations]
Recall that a triangulation is a connected planar graph such that all regions are
bounded by 3 edges.
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1. Let T = (V,E) be a triangulation. Show that |V | is even if and only if |E|
is even.

2. How many vertices has a triangulation with 42 edges (justify it)?

Exercise 4 [Planar Drawings]
Let G be a connected planar graph with n nodes, whose regions are bounded
by at most 4 edges. Furthermore, there is no vertex of degree 1. Show that:

1. Any planar drawing of G has at least n− 2, and at most 2n− 4 regions.
2. When does every planar drawing of G have exactly n−2, and when exactly

2n− 4 regions?

Exercise 5 [Bonus – Sharing a pizza]
You invite some friends at your place, and it is now time to share the pizza.
Your friends are very conciliatory, so they would be happy with any part of the
pizza (no matter the size, shape, nor if it contains crust). With your knife, the
only possibility is to cut the pizza by making a straight line from a point of the
crust to another point of the crust.

How many cuts do you need to satisfy you and your friends, i.e. 220 people?

Submission: 04.06.2025 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):

“ Maximum Number of Edges in a Planar Bipartite Graph Let G
be a bipartite planar graph with n ≥ 3 vertices. Then:

|E(G)| ≤ 2n− 4

Justification: Since G is bipartite, all faces in a planar embedding must have
length at least 4 (no odd cycles). Using Euler’s formula n−m+ f = 2 and the
inequality 4f ≤ 2m, we derive:

n−m+
m

2
≥ 2 ⇒ m ≤ 2n− 4

Example: The planar grid graph Pk × Pℓ has n = kℓ vertices and 2n− 2k −
2ℓ+ 2 edges. For large k, ℓ, this approaches the bound 2n− 4. ”

This is false. Why (careful: this one is inconspicuous)?

Exercise 7 [Bound on degree of planar graphs]

1. Prove there is no planar graph with 6 vertices with at least 3 vertices of
degree 5.

2. Find the maximum number a of edges a planar graph on 6 vertices can
have, and draw a planar graph on 6 vertices with a edges.

Exercise 8 [(Football) ball]
A ball (made for a football game), is a polyhedron made of hexagons of penta-
gons. We admit that the graph of a 3-dimensional polyhedron is always planar
(the graph G of a polyhedron is the graph whose vertices are the vertices of the
polyhedron and whose edges are the edges of the polyhedron). Find the number
of vertices, edges, pentagons and hexagons a ball can have.

Exercise 9 [Platonic solids]
A Platonic solid is a 3-dimensional (convex) polyhedron whose faces are all
regular polygons with the same number of sides, and whose vertices all have the
same number of adjacent edges. We admit that the graph of a polyhedron is a
planar graph (the graph G of a polyhedron is the graph whose vertices are the
vertices of the polyhedron and whose edges are the edges of the polyhedron).
Show there are only 5 Platonic solids. Who are they?

Exercise 10 [Tutte graph]
In 1884, Peter Tait (whose Wikipedia’s photograph is amazing), conjectured
that: “Every 3-connected planar cubic graph has a Hamiltonian cycle (along
the edges) through all its vertices”. Recall that cubic means that each vertex
has degree 3. Look at the graph produced by William Tutte in 1946, in Figure 14.
What do you think?
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Abbildung 14: Tutte’s graph

Discrete Mathematics – Solutions Sheet 6

Exercise 1 [Kuratowski’s theorem]

1. Herschel graph is clearly planar (from its drawing). Dürer graph is planar,
see Figure 15 (Left), only 3 vertices have been moved. Petersen graph is
not planar as it contains a subdivision of K3,3, see Figure 15 (Right).

2. (a) For n ≤ 4, Kn is planar. For n ≥ 5, Kn contains a K5 subgraph and
thus, by Kuratowski’s theorem, is not planar.

(a) If n ≤ 2, then Kn,m can be drawn planarly as shown in Figure 16.
Analogously, Kn,m is planar for m ≤ 2. If m,n ≥ 3, then Kn,m con-
tains a K3,3 subgraph and is thus not planar.

(a) For n ≤ 3, Qn is planar. In Q3, only one path is missing for a K3,3

subdivision (see Figure 17a). This path exists in Q4. Since Qn ⊆ Qn+1

for every n, it follows that Qn is not planar for n ≥ 4.

3. No, because: We know from the lecture that K3,3 is minimally non-planar.
If we remove an edge from K3,3, we can add another edge and obtain a
planar graph (see Figure 17b, the dotted edge is the newly added one).

Exercise 2 [Euler’s formula]
Since G is a triangulation, each face contains 3 edges on its boundary. On the
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Abbildung 15: Left: Planar drawing of Dürer graph, only 3 vertices have been
moved. Right: Subdivision of K3,3 inside Pertesen graph, note that 4 vertices
have been removed (and two edges deleted).

Abbildung 16

other hand, each edge lies on the boundary of exactly 2 faces. Double counting
yields

3g = 2|E|, that is, g =
2

3
· |E|.

Furthermore, we have

n =
∑
i=3

vi

by definition of vi. The last relation we will use is

2|E| =
∑
v∈V

d(v) =

∆∑
i=3

vi · i,

i.e., |E| = 1
2 ·
∑∆

i=3 vi · i. In particular, from (), we have

g =
1

3
·

∆∑
i=3

vi · i.
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(a) (b)

Abbildung 17

Substituting all of this into the Euler’s formula yields

2 =v3 + · · ·+ v∆ −
1

2
·

∆∑
i=3

vi · i+
1

3
·

∆∑
i=3

vi · i

=v3 + · · ·+ v∆ −
1

6
·

∆∑
i=3

vi · i.

Multiplying both sides by 6 gives

12 =

∆∑
i=3

(6− i)vi,

from which the claim follows after a slight rearrangement.

Exercise 3 [Triangulations]

1. Let F be the set of faces in a planar drawing. We count the elements in
M = {(e, f) : e ∈ E, f ∈ F, e ∈ f}. Since each face is bounded by
three edges, we have |M | = 3|F |. Since each edge is on the boundary of
two faces, we have |M | = 2|E|. Thus, 2|E| = 3|F | and |F | is even. Using
Euler’s formula, we deduce that |V | − |E| = 2− |F | is even. Hence, |V | is
even (odd) if and only if |E| is even (odd).

2. We need to solve the following system of equations:{
|V | − |E|+ |F | = 2

2|E| = 3|F |.
.

Thus, every triangulation with 42 edges has exactly |V | = 2 + |E|/3 =
2 + 14 = 16 vertices.
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Exercise 4 [Planar drawings]

1. Since there are no vertices of degree 1, each edge must be on the boundary
of two faces, and each face has at least 3 edges. By double counting, we
have

2 · |E| =
∑
e∈E

|{X face : e is on the boundary of X}|

=
∑

X face

|{e ∈ E : e is on the boundary of X}|{
≤ 4g(since each face has at most 4 edges)

≥ 3g(since each face has at least 3 edges).

Thus, 3g ≤ 2|E| ≤ 4g. From Euler’s formula, |E| = n+g−2. Substituting
this, we get

3g ≤ 2n+ 2g − 4 ≤ 4g,

which implies n− 2 ≤ g ≤ 2n− 4.

2. Equality holds if and only if the above estimations become equations, i.e.,
2|E| = 4g or 2|E| = 3g, which means each face is bounded by 4 or 3 edges,
respectively.

Exercise 5 [Bonus – Sharing a pizza]
Let S be the number of pieces. We consider the graph G, see Figure 18, whose
nodes are the intersection points of every 2 cuts and the intersection points of
the cuts with the boundary. The edges of G are the resulting subdivision of the
cuts and the boundary.

To maximize the number of pieces, we make the cuts such that every two
cuts intersect, and no three cuts intersect at the same point.

Since G is a planar graph, we have S = |F (G)| − 1 = |E(G)| − |V (G)|+ 1.

• Each cut intersects the boundary twice, and any two cuts intersect. Hence,
|V (G)| = 2n+

(
n
2

)
.

• The boundary is divided into 2n edges. Additionally, each cut is divided
into n edges because there are exactly n+1 nodes on each cut. Therefore,
|E(G)| = 2n+ n× n.

Now we have

S = |F (G)| − 1 = |E(G)| − |V (G)|+ 1

= 2n+ n · n− 2n−
(
n

2

)
+ 1 =

n2 + n+ 2

2
.

Now, if I have 219 friends (so 220 people to feed, including myself), I want

to find the least n such that n2+n+2
2 ≥ 220, which is n = 21. This will make 232
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Abbildung 18: A pizza.

pieces. Good luck for making theses cuts (you will need a large pizza in order
to not have too thin pieces)!

Exercise 6 [With ChatGPT]
The reasoning is correct, but the final example is false. ChatGPT does not know
the number of edges of a grid graph (which should be denoted Pk□Pℓ, by the
way): the correct number of edges is kℓ− k − ℓ or n− k − ℓ.

Exercise 7 [Bound on degree of planar graphs]

1. Let u, v, w be the vertices of degree 5, and a, b, c the other vertices. As
5 = 6 − 1, these vertices are connected to all the other. In particular, G
has a sub-graph K3,3 because all 3 vertices u, v, w are pair-wise connected
to all 3 vertices a, b, c. Kuratowski theorem ensures G is not planar.

2. If G is planar, then |E| ≤ 3|V | − 6, which means |E| ≤ 3× 6− 6 = 12, for
6 vertices. Any triangulation on 6 vertices does the job.

Exercise 8 [(Football) ball]
We have several equations to respect. Let F be the number of faces, E the
number of edges, and V the number of vertices of the ball, P the number of
pentagons and H the number of hexagons.

Clearly: F = P +H.
Furthermore (Euler’s formula): F − E + V = 2.
Each edge is in exactly two faces, each hexagon has 5 edges, and each pen-

tagons has 5 edges, so: 5P + 6H = 2E.
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For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Graph Colorings]

1. Compute the chromatic number χ(G) for the following graphs:
(a) The path G = Pn

(b) The cycle G = Cn

(c) The complete graph G = Kn

(d) The complete bipartite graph G = Kn,m

2. Let G = (V,E) be a graph with χ(G) = k. Further, let f : V → [k] be a

coloring of G. Show that for all {i, j} ∈
(
[k]
2

)
, there exists an edge uv ∈ E

such that f(u) = i and f(v) = j.
3. Conclude that:

χ(G) ≤ 1

2
+

√
2|E|+ 1

4

Exercise 2 [Chromatic polynomials]
Let G = (V,E) be a graph and e = uv ∈ E. We define the graph G/e as follows:
V (G/e) :=

(
V \ {u, v}

)
∪ {ũ} and E(G/e) := {e ∈ E : u, v /∈ e} ∪ {ũw :

w ̸= u,w ̸= v, uw ∈ E or vw ∈ E}. (The graph G/e is obtained from G by
contracting the edge e).

Let PG(k) denote the number of colorings of G with k colors.
1. Show that PG(k) = PG\e(k)− PG/e(k) holds for every k ≥ 0.
2. Determine PKn

(k) depending on k and n. Hint: Use 1. and an induction over n.

3. Show that the function PG : N→ N, k 7→ PG(k) is a polynomial function
in k of degree |V |.

Exercise 3 [Outerplanar graphs]
A planar graph G = (V,E) is called outerplanar if it has a planar drawing in
which all nodes lie on the boundary of the unbounded region. Show that:

1. If G is outerplanar with maximum degree 2, then G is 3-colorable.
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2. If G is outerplanar with a vertex u of degree at least 3, then G can be
splited into two smaller outerplanar graphs H1 and H2 such that G =
H1 ∪H2 and H1 ∩H2 is an edge.

3. Every outerplanar graph is 3-colorable.

Exercise 4 [Edge colorings]
Let G = (V,E) be a graph. Show:

1. If c : E → [k] is an edge coloring of G, then every set Ei = {e ∈ E : c(e) =
i} forms a matching of G. An edge coloring is a coloring of the edge of G such that

adjacent edges get different colors.

2. If G is r-regular and χ′(G) = ∆(G), then G has a matching that covers V .
Note that χ′(G) is the minimum number of colors needed such that an edge coloring exists.

3. If G is r-regular and |V | is odd, then χ′(G) = ∆(G) + 1.

Exercise 5 [Bonus – Ramsey theory]
You draw a complete graph of size n on your paper, when a friend comes by.
He proposes the following game: you color some edges in red, then he colors
some edges in blue, then you color some edges in red, and so on... The looser is
the first person to create a monochromatic triangle (i.e. to color three pair-wise
adjacent edges with the same color). Show that it is possible that no one looses
if n = 5, but there will always be a looser for n ≥ 6.

The next day, you meet your little sister, and you propose the same game.
She is cunning, so she asks that you loose if you create a red triangle, but she
looses only if she create a blue K4. What is the minimal value of n you need
to pick such that the game has a looser ? Hint: You can prove (or use directly) that

R(r, s) < R(r − 1, s) + R(r, s − 1) when R(r − 1, s) and R(r, s − 1) are even, where R(r, s) is the

minimum n such that there will be either a red Kr or a blue Ks when coloring the edges of Kn in

red and blue.

Submission: 11.06.2025 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):

“ Number of 3-colorable simple graphs on 5 vertices
There are

(
5
2

)
= 10 possible edges in a simple graph on 5 vertices, so the

total number of simple graphs is:

210 = 1024.

To count the number of 3-colorable graphs, we subtract those with chromatic
number at least 4.

On 5 vertices:
1. There is exactly one graph with chromatic number 5, namely the complete

graph K5.
2. There are 5 graphs (other than K5) with chromatic number 4.
Thus, the number of graphs with chromatic number ≥ 4 is 6.
Therefore, the number of 3-colorable graphs is: 1024− 6 = 1018 . ”
This is false. Why?

Exercise 7 [Hypercube graph]
Prove that for n ≥ 1, the hypercube graph Qn is 2-colorable.

Exercise 8 [Petersen graph]
For G the Petersen graph, compute χ(G).

Exercise 9 [Hadwiger–Nelson problem]
We consider the following infinite graph Γ: the set of vertices of Γ are all the
points of the plane R2; there is an edge pq if the points p and q are at (euclidian)
distance exactly 1. The Hadwiger–Nelson problem ask for computing χ(Γ).

1. Tile the plane with regular hexagons of diameter 1 − ε with ε > 0 very
small. Show that one can color these hexagons with 7 colors in a way that
proves χ(Γ) ≤ 7.

2. Show that Golomb graph G (see below) can be drawn in the plane such
that adjacent vertices are at distance 1.

3. Show that χ(G) = 4, and deduce that χ(Γ) ≥ 4.
4. N.B. The current research [May 2024] states that χ(Γ) ∈ {5, 6, 7}, but the

actual value is unknown. If you have plenty of time, solve this problem!
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Golomb graph

Exercise 10 [Greedy coloring]
Let G = (V,E) be a graph with V = {1, . . . , n}. The greedy coloring of G is
the coloring c : V 7→ N with c(j) = min

(
N\{c(i) ; 1 ≤ i < j and ij ∈ E}

)
.

The greedy chromatic number χg(G) is the number of colors used by the greedy
number.

1. Show that the greedy coloring is a (vertex) coloring.
2. Show that two isomorphic graphs do not necessarily have the same greedy

chromatic number.
3. Show that for any graph G isomorphic to the complete bipartite graph

Kn,m, we have χg(G) = 2.
4. Let G = (V,E) with V = {1, . . . , 2n} and E =

{
{i, j} ; 1 ≤ i ≤

n and n + 1 ≤ j ≤ 2n, j ̸= i + n
}
; and let G′ = (V,E′) with E′ ={

{i, j} ; i odd, j even, j ̸= i + 1
}
. Show that G and G′ are isomorphic,

but χg(G) = 2 whereas χg(G
′) = n.

5. For X ⊆ R, let range(X) = max(X) − min(X). Deduce there exists a
sequence of graphs Gn such that range

(
χg(H) ; H isomorphic to Gn

)
→

+∞ when n→ +∞.
6. For any graph G, show that there exists a graph H, isomorphic to G such

that χg(H) = χ(G).
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Exercise 11 [Interval graph]
Let G = (V,E) be a graph with V = {1, . . . , n}. The greedy coloring of G is the
coloring c : V 7→ N with c(j) = min

(
N\{c(i) ; 1 ≤ i < j and ij ∈ E}

)
.

Let I = (I1, . . . , Ir) be a collection of intervals of R. The associated interval
graph GI is the graph on vertex set I and edges between Ij and Ik if Ij∩Ik ̸= ∅.

1. For each Ik ∈ I, let xk = min Ik. Compute χg(H) for the graph H,
isomorphic to GI obtained by ordering the intervals of I according to xk.

2. So that χg(H) = χ(GI) for the above-defined H.
3. You are responsible for organizing the schedule of the university: each

professor tell you when he/she will teach (several time slots, each with
departure time and finishing time), and you need to tell them in which
room they will teach. Two professors cannot occupy the same room at the
same moment. Design an algorithm with linear complexity to solve this
problem.

Exercise 12 [Grundy number]
Let G = (V,E) be a graph with V = {1, . . . , n}. The greedy coloring of G is
the coloring c : V 7→ N with c(j) = min

(
N\{c(i) ; 1 ≤ i < j and ij ∈ E}

)
.

The greedy chromatic number χg(G) is the number of colors used by the greedy
number. The Grundy number is Ψ(G) = max

(
χg(H) ; H isomorphic to Gn

)
.

1. Compute Ψ(G) for the path Pn.
2. Compute Ψ(G) for the cycle Cn.
3. Show that if G contains a triangle (i.e. 3 pair-wise connected vertices), or 4

vertices such that the edges between them form a path, then Ψ(G) ̸= χ(G).
4. Deduce that the complete bipartite graphs Kn,m are the only connected

graphs for which Ψ(G) = 2.
5. A graph is well-colored if Ψ(G) = χ(G). Show that K2,2,2 (graph obtained

from K6 by removing the edges 14, 25 and 36) is well-colored.
6. Show that any complete multi-partite graph is well-colored.
7. Show that Ψ(G) ≥ k if and only if the graph obtained from G by adding

a (k − 1)-vertex clique is well-colored.

Exercise 13 [Grundy game]
The Grundy game plays as follows:

“Given a graph G = (V,E), two players, Alice and Bob, alternate their turns
in choosing uncolored vertices to be colored. Whenever an uncolored vertex is
chosen, it is colored by the least positive integer not used by any of its colored
neighbors. Alice’s goal is to minimize the total number of colors used in the
game, and Bob’s goal is to maximize it.”

Play the Grundy game on a graph of your choice (especially, path, tree,
cycle, complete graph, complete bipartite graph).
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Discrete Mathematics – Solutions Sheet 7

Exercise 1 [Graph Colorings]

1. (a) χ(Pn) = 2 for n ≥ 2, because Pn is bipartite.

(b) χ(Cn) = 2 if n is even (because then Cn is bipartite), and χ(Cn) = 3
if n is odd (because removing a vertex give rise to a path, which is
2-colorable, and then we can color the last vertex with a third color).

(c) Any two vertices in Kn are connected. Therefore, χ(Kn) = n.

(d) The vertex set of Km,n is the disjoint union of two sets A and B, whe-
re no vertices are connected within each set. We can color the vertices
in A with a and the vertices in B with b. Therefore, χ(Km,n) = 2.

2. Let f : V → C be a coloring with |C| = k, and let Vi = {v ∈ V : f(v) = i}.
Suppose E∩(Vi×Vj) = ∅ (there is no edge uv with f(u) = i and f(v) = j),
with i ̸= j ∈ C. We define f ′ : V → C \ {j} as

f ′(v) =

{
i if v ∈ Vj

k if v ∈ Vk, k ̸= j
.

Since E ∩ (Vi × Vj) = ∅, f ′ is a coloring of G with |C \ {j}| = k − 1. This
is a contradiction to χ(G) = k.

3. According to part 2., there is at least one edge for all {i, j} ∈
(
[k]
2

)
. It

follows that |E| ≥
(
k
2

)
. It follows that:

(
k
2

)
≤ |E|, which implies k(k−1)

2 ≤
|E|, and then k2 − k − 2|E| ≤ 0, leading finally to k ≤ 1

2 +
√

1
4 + 2|E|.

Exercise 2 [Chromatic polynomials]

1. Note that every coloring with k colors of G corresponds to a coloring with
k colors of G \ e. On the other hand, every coloring f : V (G \ e) → [k]
with f(u) ̸= f(v) gives a coloring of G.

Furthermore, every coloring f : V (G \ e) → [k] with f(u) = f(v) corre-
sponds exactly to one coloring of G/e. Thus, there is a bijection

{Colorings of G \ e} ←→ {Colorings of G} ∪ {Colorings of G/e}

and the statement follows.

2. by Induction: We show by induction on n that PKn
(k) =

∏
i∈[n](k−i+1)

holds.

For n = 1 this is obviously true. Let n ≥ 2. According to (i), we have

PKn
(k) = PKn\e(k)− PKn/e(k)
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for any edge e ∈ E(Kn). Furthermore, Kn/e = Kn−1, so by induction
hypothesis

PKn/e(k) =
∏

i∈[n−1]

(k − i+ 1).

Kn \ e is obtained from Kn−1 by adding a new vertex v of degree n − 2.
If a coloring f : Kn−1 → [k] is chosen, it can be extended to a coloring
f̃ : Kn \e→ [k] by choosing f̃(v) such that f̃(v) ̸= f(w) for all w ∈ N(V ).
Thus, there are k − (n− 2) ways to extend f and it follows that

PKn\e(k) = (k − (n− 2))PKn−1
(k)

and thus

PKn
(k) = (k−(n−2))PKn−1

(k)−PKn−1
(k) = (k−(n−1))PKn−1

(k) =
∏
i∈[n]

(k−i+1)

without Induction: For k < n, PKn(k) = 0.

For k > n, we choose an arbitrary order v1, . . . , vn of the vertices of Kn.
There are k ways to color v1, then k − 1 ways for v2, k − i + 1 ways for
vi (i ∈ [n]). Therefore, it follows that PKn

(k) =
∏

i∈[n](k− i+ 1) (in fact,

this equality also holds for k < n).

3. We proceed by induction on m = |E|:
If m = 0, then G = (V, ∅) and each vertex v ∈ V can be colored arbitrarily.
Thus, PG(k) = kn.

Now let m ≥ 1 and the statement hold for all graphs with at most m− 1
edges. Let e ∈ E(G), then according to 1., PG(k) = PG\e(k)−PG/e(k). By
induction hypothesis, PG\e(k) is a polynomial of degree n and PG/e(k) is
a polynomial of degree n−1. Overall, it follows that PG(k) is a polynomial
of degree n.

Exercise 3 [Outerplanar graphs]

1. Since G is connected, we have d(u) ≥ 1 for all u ∈ V . The only graph
where all vertices have degree 1 consists of a single edge. Therefore, the
statement follows.

2. Let G be outerplanar. We show the statement by induction on |V |. If
|V | ≤ 3, then each vertex can be colored with a different color and the
statement follows. Now let |V | ≥ 4. If G consists of multiple connected
components, we can apply the induction hypothesis to each component.
Thus, assume G is connected. According to 1., there exists a vertex u of
degree ≥ 2. If d(u) = 2, we can remove u. The resulting graph is still
outerplanar and by induction hypothesis 3-colorable. Since the neighbors
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of u use at most two colors, we can color u with one of the remaining
colors. Therefore, assume d(u) > 3. Then there exists a neighbor v of u
such that the edge uv is not on the boundary of the outerplanar drawing.
This edge splits the drawing of G into two parts (such that no edge goes
from one part to the other). Dividing G into this tow parts give rise to two
outerplanar subgraphs, both containing uv and having fewer vertices. By
induction hypothesis, these two graphs are 3-colorable and after possible
recoloring, we can assume that u is colored the same in both graphs, and
so is v. This way, we obtain a 3-coloring of G.

Exercise 4 [Edge colorings]

1. By definition of an edge coloring, edges of the same color are not adjacent.
Thus, edges of the same color form a matching. (Not necessarily a perfect
matching, however.)

2. If G is r-regular, then ∆(G) = r. If χ′(G) = ∆(G) = r, then for each
vertex u ∈ V (G) and each color 1 ≤ i ≤ r, there is an edge uv with
c(uv) = i. Here, c is a minimum edge coloring. According to 1., the edge
set E1 forms a matching of G. According to the previous argument, every
vertex of V is covered.

3. From the lecture, we know that χ′(G) ∈ {∆(G),∆(G) + 1}. If χ′(G) ̸=
∆(G) + 1, then χ′(G) = ∆(G) must hold, and according to (ii), G has a
matching that covers V . Therefore, |V | must be even.

Exercise 5 [Bonus – Ramsay theory]
If n = 5, then the following coloring of the edges of K5 leads to a draw.

Now, fix a red-and-blue coloring of the edges of Kn for n ≥ 6. If n = 6, then
fix a vertex v: it has degree 6− 1 = 5 in K6. Among this 5 neighbors, either at
least 3 are connected by a blue edge of either at least 3 are connected by a red
edge. Suppose v has 3 blue-connected neighbors (the red case is symmetrical), if
they are connected pair-wise by red edges, then there is a red triangle ; otherwise,
there are two blue-connected neighbors of v that are connected by a blue edge,
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and thus we have a blue triangle. If n ≥ 6, then Kn contains a K6 for which
any coloring will create a monochromatic triangle.

With R(r, s) < R(r−1, s)+R(s, r−1) (see proof below), we obtain R(3, 4) <
R(2, 4)+R(3, 3). On the one hand, we have R(3, 3) = 6 by the above reasoning,
and on the other hand, we have R(2, n) = n because it is possible to color the
edges of Kn−1 avoiding creating a red Kn or a blue K2 (by coloring all edges of
Kn−1 in red), but impossible to color the edges of Kn without making a blue
edge K2 or a red Kn. Hence, R(3, 4) < 4 + 6 = 10, i.e. R(3, 4) ≤ 9. It remains
to show that there exists an edge coloring of K8 with no red K3 nor blue K4.
Here it is:

N.B. [Adapted fromWikipedia] We prove that R(r, s) ≤ R(r−1, s)+R(r, s−
1) by induction on r + s.

Consider a complete graph on n = R(r − 1, s) + R(r, s − 1) vertices whose
edges are coloured in red and blue. Pick a vertex v from the graph, and partition
the remaining vertices into two sets M and N , such that for every vertex w,
w is in M if edge vw is blue, and w is in N if vw is red. Because the graph
has R(r − 1, s) + R(r, s − 1) = |M | + |N | + 1 vertices, it follows that either
|M | ≥ R(r − 1, s) or |N | ≥ R(r, s − 1). In the former case, if M has a red Ks

then so does the original graph and we are finished. Otherwise M has a blue
Kr−1 and so M ∪ {v} has a blue Kr by the definition of M . The latter case is
analogous. Thus the claim is true and we have completed the proof for 2 colours.

A strengthening of the argument gives the strict inequality when both R(r−
1, s) and R(r, s− 1) are even.

Exercise 6 [With ChatGPT]
ChatGPT is confusing between “graphs” and “graphs up to isomorphism”.
When it counts 1024, that all graphs. When it count 6, that only graphs up
to isomorphism. Hence, it subtract carrot to potatoes...

Up to isomorphism, there are 5 graphs on 5 vertices with χ(G) ≥ 4: take
K4, add one vertex, and connect it to either 0, or 1, or 2, or 3, or 4 other vertices.
A careful counting show that there are 958 graphs on 5 vertices with χ(G) ≤ 3,
which gives 29 graphs up to isomorphism.
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Exercise Sheet 8

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Recall some notations on sequences of positive numbers:
un = O(vn) if there exists C ≥ 0 such that un ≤ C vn for all n large enough.
un ∼ vn when n→ +∞ if un

vn
→ 1 when n→ +∞.

You can multiply (or divide) equivalent, i.e. if un ∼ vn and u′
n ∼ v′n, then

unu
′
n ∼ vnv

′
n and un

u′
n
∼ vn

v′
n
.

Exercise 1 [Hockey-stick identity]
We want to prove the following “hockey-stick identity” using different methods:

for all r ≤ n,

n∑
k=r

(
k

r

)
=

(
n+ 1

r + 1

)
1. Using Pascal identity and a recursion on n, prove the hockey-stick identity.
2. Fix a crowd of n+ 1 persons.

(a) How many ways are there to form a a group of r+ 1 people out of a
crowd of n+ 1 people?

(b) Label n− r+1 of these persons (using the numbers 1, . . . , n− r+1):
for a given k ∈ [1, n − r + 1] how many ways are there to construct
a group of r + 1 persons whose minimum label is k?

(c) Deduce the hockey-stick identity.
3. Let x be a symbol, and X = 1 + x.

(a) Prove that Xr + · · ·+Xn = 1
x (X

n+1 −Xr).
(b) Evaluate the coefficient on xr on each side, and prove the hockey-stick

identity.

Exercise 2 [Odd and distinct partitions]
For a fixed n, show that there are as many partitions (λ1, . . . , λm) where λ1 ≥
λ2 ≥ · · · ≥ λm ≥ 1 with all λi odd and

∑
i λi = n, that there are partitions

(µ1, . . . , µr) where µ1 > µ2 > · · · > µr ≥ 1 where all parts are distinct and∑
j µj = n.
To do so, one way is to exhibit a bijection between both types of partitions.
Hint: Split even parts into two parts, and use binary decomposition in a clever way.
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Exercise 3 [Singmaster’s theorem]

For k ̸= 1, we want to estimate N(k) = #
{
(n, r) ;

(
n
r

)
= k

}
. Especially, we

want to prove Singmaster’s theorem: N(k) = O(log k) when k → +∞.
1. Show that N(k) is finite for k ̸= 1, more precisely, show that N(k) ≤

k(k−1)
2 .

2. Look at the functions b 7→
(
a+b
a

)
for fixed a, and a 7→

(
a+b
a

)
for fixed b.

Deduce that if s is such that k ≤
(
2s
s

)
, then N(k) ≤ 2s.

3. Show that 2m ≤
(
2m
m

)
for m ≥ 1, and prove Singmaster’s theorem.

N.B. A better estimation is known: N(k) = O
(

log log log k
(log log k)3 log k

)
, but it

is conjectured that N(k) = O(1), and the greatest known value of N(k) is
N(3003) = 8 (tested up to k = 248).

Exercise 4 [Useful bounds on binomial coefficients]

1. Show the left inequality in(n
k

)k
≤
(
n

k

)
≤
(n
k

)k
ek

2. Using that for all k ≥ 1, we have (1 + 1
k )

k ≤ e, show that 1
k! ≥

(
e
k

)k
.

Deduce the right side of the above inequality.
3. Fix a real number c ∈ [0, 1

2 ], and let H(c) = −c log2 c− (1− c) log2(1− c).

Using that, when n → +∞, we have n! ∼
(
n
e

)n√
2πn, prove that, if

k = c n, then
(
n
k

)
∼ 1√

2πc(1−c)n
2H(c)n.

4. Deduce the equivalent for Catalan numbers: 1
n+1

(
2n
n

)
∼ 4n

n3/2
√
π
.

Exercise 5 [Bonus – Symmetric Venn diagram]
You draw a closed curve in the plane1, and name S the region interior to this
shape. You rotate this shape S by a nth of a full turn, and paint each copy with
its own color. Magically, you see, in front of your eyes, all the possible mixing
of the colors you have used (see Figure 19).

Show that n is prime.

Submission: 18.06.2025 before 23:59

1A closed curve is the image of a continuous function f : [0, 1] → R2 with f(0) = f(1), but
you don’t need that much formalism.
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Abbildung 19: Symmetric Venn diagrams for n ∈ {2, 3, 5, 11}. The one for 11 is
named Newroz, and was discovered in July 2012 (each region is painted violet,
and the color changes according to the number of intersecting regions).
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Tutorium additional exercises

Exercise 6 [With ChatGPT]
ChatGPT told me this (it is a real copy-paste from the free version of ChatGPT):

“ For a fixed n, we consider the set of binomial coefficients

Sn =

{(
m

k

) ∣∣∣∣ 0 ≤ k ≤ m ≤ n

}
and define

an = min (N \ Sn)

as the smallest natural number that is not a binomial coefficient for any m ≤ n.
We are interested in values of n such that

an = n+ 4.

We find that for n = 13, the set of binomial coefficients S13 includes all
natural numbers up to 16, but does not contain 17. Thus,

a13 = 17 = 13 + 4,

which satisfies the condition.
Therefore, n = 13 is the smallest such number for which an = n+ 4. ”
This is false. Why?

Exercise 7 [Combinatorial identities]
Show, through combinatorial reasoning, that

n−1∑
j=1

j(n− j) =

n∑
i=2

(
i

2

)
=

(
n+ 1

3

)
.

Hint: Consider all subsets of {1, . . . , n + 1} with three elements and count them appropriately.

Exercise 8 [Chu-Vandermonde identity]
Let k, n,m be natural numbers.

1. Determine the coefficient of xk in (1 + x)n+m.
2. Prove that

k∑
j=0

(
n

j

)(
m

k − j

)
=

(
n+m

k

)
Hint: Look intensively at (1 + x)m(1 + x)n = (1 + x)n+m

3. Deduce
∑n

k

(
n
k

)2
=
(
2n
n

)
.

Exercise 9 [Chu-Vandermonde identity, version 2]
Prove Chu-Vendermonde identity (Exercise 3.2) by taking n red balls and m
blue balls, and counting in two ways how many possibilities there are to pick k
balls from this collection of n+m balls.
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Exercise 10 [Invertible matrices]
Count the number of elements of GLn

( Z
pZ
)
for n ≥ 1 and p prime.

Exercise 11 [Weak and Strong number compositions]
Let n, r ≥ 1 be natural numbers. A weak r-composition of n is a sequence
λ = (λ1, λ2, . . . , λr) of natural numbers λi ≥ 0, such that n = λ1 + · · · + λr

(note that λi are not ordered). If λi ≥ 1 for 1 ≤ i ≤ r, then λ is called a strong
r-composition of n.

1. How many weak and strong 2-compositions of n are there?
2. Show that the number of weak r-compositions of n − r is equal to the

number of strong r-compositions of n.

Exercise 12 [Trinomial theorem]

1. Let an,i,j be the number of words of length n over the alphabet {x, y, z}
that contain exactly i occurrences of the letter x, and j occurrences of the
letter y. For example:

a4,1,1 = |{xyzz, xzyz, xzzy, yxzz, yzxz, yzzx, zxyz, zxzy, zzxy, zyxz,
zyzx, zzyx}| = 12

Show that an,i,j =
n!

i!j!(n−i−j)! .

2. Prove the Trinomial Theorem:

(x+ y + z)n =

n∑
0≤i+j≤n

an,i,jx
iyjzn−i−j .

Hint: Consider w = x + y. Then (x + y + z)n = (w + z)n and you can use the Newton’s

Binomial theorem.

3. Derive from 2. two different expressions for the number of words of length
n over the alphabet {x, y, z}.

Exercise 13 [Binomial coefficients and congruence]
Let p be a prime number. Show that

(
p
k

)
is divisible by p, except if k ∈ {0, p}.

Deduce that (a+ b)p − (ap + bp) is divisible by p, for any integers a and b.

82



Discrete Mathematics – Solutions Sheet 8

Exercise 1 [Hockey-stick identity]

1. If r = n, the identity is trivial (both sides are 1). Suppose the identity
hold for some n and for any r ≤ n, then we have:

n+1∑
k=r

(
k

r

)
=

(
n+ 1

r

)
+

n∑
k=r

(
k

r

)
=

(
n+ 1

r

)
+

(
n+ 1

r + 1

)
=

(
n+ 2

r + 1

)
This concludes the proof.
(a) There are

(
n+1
r+1

)
ways to make a group of r+1 persons out of a crowd

of n+ 1 persons.
(b) If k is the smallest label in the group, then there is no-one with label

between 1 and k − 1, hence it amounts to choosing a group of r
persons in a crowd of n − (k − 1) persons (then adding the person
labeled k): there are

(
n−k+1

r

)
ways.

(c) There is a bijection between the ways of making a group of r + 1
persons in a crowd of n + 1 persons, and the couples (k, a way to
make a group of r+1 persons in a crowd of n+1 persons where the
minimum of the group is k). To see that this is a bijection, note that
any group contains a labeled person (because there are only r non-
labeled persons), and that a group has a unique minimum. Hence,
via this bijection, we get the hockey-stick identity.

2. (a) Via the well-known geometric summation:Xr+· · ·+Xn = Xr−Xn+1

1−X =
1
x (X

n+1 −Xr

(b) On the left side, the coefficient on xr of Xk = (1 + x)k is
(
k
r

)
, via

Newton binomial formula. On the right side, the coefficient on xr is
the one on xr+1 of (1 + x)n+1 − (1 + x)r, which is

(
n+1
r+1

)
− 0. Hence,

we get the hockey-stick identity (again).

Exercise 2 [Odd and distinct partitions]
Take a partition of n into distinct parts µ1 > µ2 > · · · > µr ≥ 1. For each
even part µj = 2x, replace it by two parts of value x. If every part is odd, we
have obtained a partition into odd parts, else we can repeat the process in order
to obtain a partition of n containing only odd parts. We have a map f from
distinct partitions to odd partitions.

Let’s construct the reciprocal of f . Take λ1 ≥ · · · ≥ λm ≥ 1 a partition of
n into odd parts. Suppose λj is repeated p times (meaning that λj = λj′ for
p different values of j′), with possibly p = 1. Write p =

∑
i∈I 2

i (the binary
decomposition of p), and replace the p copies of λj by µi = λj × 2i for i ∈ I.
Reordering µ give rises to a partition into distinct parts because all integer
numbers have a unique way to be written as k × 2i with k odd (just take the
prime decomposition of your number and isolate the power of 2).
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A quick scribble shows that these two constructions are reciprocal from one
another, giving rise to a bijection between odd and distinct partitions (hence,
there are the same number of both).

Exercise 3 [Singmaster’s theorem]

1. If n > k, then
(
n
r

)
> k for all r ∈ {1, . . . , n − 1}, and moreover,

(
n
0

)
=(

n
n

)
= 1 ̸= k for all n. Hence, the possible values of n and r such that(

n
r

)
= k are limited into the (interior of the) part of Pascal’s triangle that

lies above the k-th line, that is to say n ≤ k and 1 ≤ r ≤ n− 1. There are
k(k−1)

2 such couples (n, r), which proves N(k) ≤ k(k−1)
2 < +∞.

2. The maps fa : b 7→
(
a+b
a

)
for fixed a, and fb : a 7→

(
a+b
a

)
for fixed b

are strictly increasing. Consequently, if
(
a+b
b

)
= k for some b and for a

fixed, then
(
a+b
a

)
̸= k for all other b (and same a) ; and the same holds

symmetrically. Now, if k ≤
(
2s
s

)
, then if k =

(
a+b
a

)
, then a ≤ s and b ≤ s

(because fa and fb are increasing). Moreover, each choice of a give rise
to at most one possible solution for

(
a+x
a

)
= k, and each choice of b also,

so the number of solutions is at most: (the number of possible a) + (the
number of possible b) ≤ s+ s = 2s, i.e. N(k) ≤ 2s.

3. For m ≥ 1:
(2m)! =

∏2m
k=1 k

=
∏m

k=1(2k)
∏m−1

k=0 (2k + 1)

≥ 2m
∏m

k=1 k
∏m−1

k=0 k

≥ 2m(m!)2

Hence, 2m ≤ (2m)!
(m!)2 =

(
2m
m

)
, and thus, for a fixed k the smallest s such

that k ≤
(
2s
s

)
satisfies

(
2(s−1)
s−1

)
≤ k, so 2s−1 ≤ k, implying s ≤ 1 + log2 k.

Finally, N(k) ≤ 2s ≤ 2 + 2
log 2 log k = O(k).

Exercise 4 [Useful bounds on binomial coefficients]

1. A quick scribble gives n
k ≤

n−x
k−x for all x ∈ [1, k − 1]. Hence:(

n

k

)
=

n

k

n− 1

k − 1

n− 2

k − 2
. . .

n− k + 1

1
≥ n

k

n

k

n

k
. . .

n

k
=
(n
k

)k
2. For the upper bound, note that (k+1)k+1

(k+1)! = (k+1)k

k! =
(
k+1
k

)k kk

k! ≤ e kk

k! . By

induction: 1
k! ≤

ek

kk . Consequently,
(
n
k

)
= n(n−1)...(n−k+1)

k! ≤ nk

k! ≤
(
n
k

)k
ek.
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3. Using the Stirling equivalent n! ∼
(
n
e

)n√
2πn, we get:(

n
cn

)
= n!

(cn)!((1−c)n)!

∼ (n
e )

n√
2πn

( cn
e )

cn√
2πcn ( (1−c)n

e )
(1−c)n√

2π(1−c)n

∼ 1√
2π

1√
c(1−c)

1√
n

(
1

cc(1−c)1−c

)n
∼ 1√

2πc(1−c)n
2H(c)n

4. We have H
(
1
2

)
= 1. Hence, substituting n by 2n in the previous formula,

and c by 1
2 , we get: 1

n+1

(
2n
n

)
∼ 1

n
1√

2π 1
4 2n

22n, which reduce to the desired

form.

Exercise 5 [Bonus – Symmetric Venn diagram]
Consider the colored sub-regions that correspond to the mixing of k different
colors. On the one hand, there are

(
n
k

)
such sub-regions, because each region

correspond to any choice of k colors among the n colors used. Besides, as the
drawing is symmetric, one can start with a sub-region and consider all the other
sub-regions one can obtain by (multiple) rotations of a n-th of a full turn. This
partitions the collection of sub-regions into n parts of the same size, hence:
n|
(
n
k

)
.

This means that 1
n

(
n
k

)
is a integer for all k, especially for a prime divisor

p of n with p ̸= n. But: 1
n

(
n
p

)
= (n−1)(n−2)...(n−p+1)

p! . The denominator of this

fraction has p as a factor, but the numerator has not (as p|n, we know that p
does not divide any j ∈ {n − p + 1, ..., n − 1}), so the right-hand-side is not a
integer because p is co-prime with (n− 1)(n− 2)...(n− p+ 1).

Consequently, n is prime (he has no other prime divisor than itself).

Exercise 6 [With ChatGPT]
ChatGPT doesn’t know how to count: a13 = 14, as 14 is not a binomial coeffi-
cient for n ≤ 13 (print a big Pascal triangle). Actually, I didn’t find any n with
an = n+ 4, for n ≤ 300.

Exercise 7 [Combinatorial Identities]
We aim to show that

n−1∑
j=1

j(n− j) =

n∑
i=2

(
i

2

)
=

(
n+ 1

3

)
.

To demonstrate this identity, we note that all three expressions count the same
quantity. First, from Theorem 1.3 (c), we know that

(
n+1
3

)
counts the 3-element

subsets of [n+1]. We will show that the other two expressions can be interpreted
similarly.
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First, let’s classify the 3-element subsets of [n+ 1] by their middle element.
Let A = {i, j, k} ⊆ [n + 1] with i < j < k. Then, it holds that 2 ≤ j ≤ n. We
denote by Mj the set of 3-element subsets of [n + 1] with the middle element
j, where 2 ≤ j ≤ n. We now determine the number of elements in Mj . To
specify a set A in Mj , we need to choose the smallest and largest element of
A. For the smallest element, there are j − 1 possibilities, and for the largest,
there are (n + 1) − j possibilities. By the product rule, it follows that |Mj | =
(j − 1)(n+ 1− j). Since

(
[n+1]

3

)
= ·∪nj=2Mj , it follows by the sum rule that(

n+ 1

3

)
=
∣∣([n+ 1]

3

)∣∣ = n∑
j=2

|Mj | =
n∑

j=2

(j − 1)(n+ 1− j) =

n−1∑
j=1

j(n− j).

This shows one of the equalities to be proven.
For the second equality, we classify the 3-element subsets of [n+1] according

to their largest element. Let A = {i, j, k} ⊆ [n + 1] with i < j < k. Then,
3 ≤ k ≤ n+1. Let Nk be the set of 3-element subsets of [n+1] with the largest
element k, where 3 ≤ k ≤ n + 1. We now determine the number of elements
in Nk. To specify a set A in Nk, we need to choose the smallest and middle
element. Since k is the largest element of A, there are

(
k−1
2

)
possibilities for the

other two elements. Therefore, |Nk| =
(
k−1
2

)
. Since

(
[n+1]

3

)
= ·∪n+1

k=3Nk, it follows
by the sum rule that(

n+ 1

3

)
=
∣∣([n+ 1]

3

)∣∣ = n+1∑
k=3

|Nk| =
n+1∑
k=3

(
k − 1

2

)
=

n∑
i=2

(
i

2

)
.

This shows the second equality.

Exercise 8 [Chu-Vandermonde identity]

1. According to Newton’s binomial formula, we have (1+x)n+m =
∑n+m

k=0

(
n+m
k

)
xk,

so the coefficient on xk is
(
n+m
k

)
.

2. On the other side:

(1 + x)n+m = (1 + x)n(1 + x)m

=

(
n∑

i=0

(
n

i

)
xi

) m∑
j=0

(
m

j

)
xj


=

n+m∑
k=0

 ∑
i+j=k

(
n

i

)(
m

j

)xk

So, by identification of the coefficient, we get Chu-Vandermonde formula:∑
i+j=k

(
n
i

)(
m
j

)
=
(
n+m
k

)
(replace i by k − j). A good exercise is also to

find a combinatorial proof of this identity.
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Exercise 9 [Chu-Vandermonde identity, version 2]
On the one side, there are

(
n+m
k

)
ways to pick k balls from a collection of n+m

balls. On the other side, picking k balls in a collection of n+m balls amounts to
picking j balls in a collection of n balls and picking k− j balls in a collection of
m, where j can be any integer from 0 to k. Seeing the problem in this fashion,
there are

∑k
j=0

(
n
j

)(
m

k−j

)
way to pick k balls in a collection of n+m balls.

Exercise 10 [Invertible matrices]
A matrix in GLn(

Z
pZ ) is just a collection of n vectors that are linearly indepen-

dent: (v1, . . . , vn).
When n = 1, there are pn − 1 possibilities because each of the n coordinate

of v1 can be any number from 0 to p− 1, but v1 ̸= 0.
Pick any (v1, . . . , vk, vk+1) linearly independent (for k + 1 ≤ n). Having

independence is equivalent to say that: (v1, . . . , vk) is linearly independent, and

vk+1 cannot be written as
∑k

j=1 ajvj , with aj ∈ {0, . . . , p− 1}. Hence, for each

choice of independent (v1, . . . , vk), there are np − pk valid choices for vn+1 (np

vectors in
(

Z
pZ

)n
, among which pk are forbidden).

Consequently, #GLn(
Z
pZ ) =

∏n−1
k=0(n

p − pk).

Exercise 11 [Weak and Strong Number compositions]

1. The strong 2-compositions of n are given by (i, n − i) for 1 ≤ i ≤ n − 1,
i.e., there are n − 1 of them. For weak 2-compositions, the compositions
(0, n) and (n, 0) are additionally included, i.e., there are n+ 1 of them.

2. We need to show that the number of weak r-compositions of n−r is equal
to the number of ordered r-compositions of n. To this end, let

P1 := {λ = (λ1, . . . , λr) : λi ≥ 0 for 1 ≤ i ≤ r, λ1 + · · ·+ λr = n− r}

be the set of weak r-compositions of n− r and let

P2 := {λ = (λ1, . . . , λr) : λi ≥ 1 for 1 ≤ i ≤ r, λ1 + · · ·+ λr = n}

be the set of r-compositions of n. We consider the following mapping

P1 → P2

λ = (λ1, . . . , λr) 7→ Φ(λ) = (λ1 + 1, . . . , λr + 1).

We first show that the mapping Φ is well-defined. Let λ = (λ1, . . . , λr) ∈
P1. Since λi ≥ 0, it follows that λi + 1 ≥ 1 for 1 ≤ i ≤ r. And since
λ1 + · · · + λr = n − r, it also holds that (λ1 + 1) + · · · + (λr + 1) =
(n− r) + r = n. Thus, Φ(λ) is an r-composition of n, i.e., Φ(λ) ∈ P2.

Φ is also injective, because if λ, µ ∈ P2 such that

Φ(λ) = (λ1 + 1, . . . , λr + 1) = (µ1 + 1, . . . , µr + 1) = Φ(µ),
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then it directly follows that λi = µi for 1 ≤ i ≤ r, i.e., λ = µ.

Furthermore, Φ is surjective. For λ = (λ1, . . . , λr) ∈ P2, it follows as in
the proof of well-definedness that λ′ := (λ1 − 1, . . . , λr − 1) ∈ P1 holds
and additionally, Φ(λ′) = λ.

Thus, Φ is a bijection and by the rule of equality, it follows that #P1 =
#P2.

Exercise 12 [Trinomial Theorem]

1. The number an,i,j of words of length n in the alphabet {x, y, z} that
contain exactly i x’s and j y’s is:

|{i-element subset of [n]}| · |{j-element subset of [n− i]}| =(
n

i

)(
n− i

j

)
=

n!

i!(n− i)!

(n− i)!

j!(n− i− j)!
=

n!

i!j!(n− i− j)!
.

2.

(x+ y + z)n = (x+ y + z)n =

=

n∑
i=0

(
n

i

)
xi(y + z)n−i =

=

n∑
i=0

(
n

i

)
xi

n−i∑
j=0

(
n− i

j

)
yjzn−i−j =

=
∑

0≤i+j≤n

(
n

i

)(
n− i

j

)
xiyjzn−i−j =

=
∑

0≤i+j≤n

an,i,jx
iyjzn−i−j .

3. Let An,i,j be the set of words of length n in the alphabet {x, y, z} that
contain exactly i x’s and j y’s.

|Words of length n in the alphabet {x, y, z}| =∑
0≤i+j≤n

|An,i,j | =∑
0≤i+j≤n

an,i,j =

(1 + 1 + 1)n = 3n.
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Exercise 13 [Binomial coefficients and congruence]
Firstly,

(
p
1

)
= p is divisible by p.

Suppose
(
p
k

)
is divisible by p for some 1 ≤ k ≤ p− 2. Then,

(
p

k+1

)
(k + 1) =(

p
k

)
(p−k−1). As p divides the right-hand-side, it also divides the left-hand-side.

As p is co-prime with k+1 (because p is prime and 0 < k+1 < p), we get that
p divides

(
p

k+1

)
. By induction, p divides all

(
p
k

)
for 1 ≤ k ≤ p− 1.

This implies that (a+ b)p = ap + bp +
∑p−1

k=1

(
p
k

)
akbp−k ≡ ap + bp [p].

This only works because p is prime!
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University of Osnabrück Martina Junhke

Institute of Mathematics Germain Poullot
Tarek Emmerich

Discrete Mathematics – Summer Semester 2025

Exercise Sheet 9

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Permutations of Multisets]
Let A = {a1, . . . , aℓ} be a set and M the multiset over A where the element ai
occurs with multiplicity ki.

1. Show that if A and B are sets and φ : A → B is a surjective map, then
|A| =

∑
b∈B |φ−1({b})|

2. Construct a surjective map φ : [n]⟨n⟩ → PM with |φ−1({π})| =
∏ℓ

i=1 ki!

3. Conclude that |PM | =
n!∏ℓ

i=1 ki!
4. How many anagrams of the word discretemathematics exist (even if

they don’t make sense) ?

Exercise 2 [Inclusion-exclusion inequalities]
Let A1, . . . , An be finite sets.

1. Show that:
∑

i |Ai| −
∑

i ̸=j |Ai ∩Aj | ≤ |
⋃n

i=1 Ai| ≤
∑

i |Ai|
2. Using a recursion on K, show that, for K ≤ m, we have (with

(
m

m+1

)
= 0):

K∑
k=1

(−1)k+1

(
m

k

)
= 1− (−1)K

(
m− 1

K

)
3. Show that, if K ∈ [n] is odd, then:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ ≤
K∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤k

|Ai1 ∩ · · · ∩Aik |

And show that, if K ∈ [n] is even, the inequality is reversed.
4. For some fixed K, show that one the previous inequality holds is actually

an equality if and only if the intersection of any K +1 sets chosen among
the sets A1, . . . , An is empty.

Exercise 3 [Pocket money with restrictions]
You have 30 coins of 1e. You want to distribute them to your 3 children.
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1. Show that the number of ways to distribute 30 coins of 1e among your 3
children is the coefficient on X30 in P (X) = (1 +X +X2 + · · ·+X30)3.

2. You now want each child to get at least 1e: modify the polynomial P so
that the number of ways to do so is the coefficient on X30 of your new
polynomial.

3. You want that the oldest child gets at least 10e: modify the polynomial
P so that the number of ways to do so is the coefficient on X30 of your
new polynomial.

4. You want that the 2 youngest children gets at least 8e: modify the poly-
nomial P so that the number of ways to do so is the coefficient on X30 of
your new polynomial.

5. How many ways are there to distribute 30 coins of 1e among your 3
children (without any restriction)?

Exercise 4 [Radius of convergence and asymptotic behavior]
Let (an)n≥0 be a sequence of non-negative (integer) numbers, and define the
series A(z) =

∑
n≥0 an z

n. We want to estimate the asymptotic growth of an
when n→ +∞ from “easy to get” properties of A(z). In this exercise, z ∈ R.

We define the radius of the sequence (an)n≥0 as the biggest r such that
an ≤

(
1
r

)n
for any n big enough (i.e. there exists n◦ such that for all n ≥ n◦,

we have an ≤
(
1
r

)n
).

1. For the sequence an = 5n, compute the radius r, compute the genera-
ting series A(z), and show that

∑
n≥0 an z

n → +∞ if z > r; whereas∑
n≥0 an zn ̸→ +∞ if z < r.

2. Fix a sequence (an)n≥0 with radius r. Show that
∑

n≥0 an z
n → +∞, for

any z > r.
3. Conversely, show that

∑
n≥0 an z

n ̸→ +∞, for any z < r.
Hint: Pick n◦ cleverly, then multiply the term of the series by rn

rn .

The radius is an approximation of the exponential growth of a sequence: if the
sequence (an)n≥0 has radius r, then one may think that an is roughly equal to
rn when n → +∞ (usually, an = F (n) rn where F is a rational fraction, but
this should not be regarded as a rigorous mathematical statement).

You have just proven that the radius of the sequence (an)n≥0 is equal to
“the smallest z◦ such that either A(z◦) is not well-defined, or such that A(z) is
not well-defined for any z = z◦ + ε (for all ε > 0 small enough)”. This is not
mathematically formal, but you can use it for the next question (and in life).

4. Complete the following table (if you do not complete the last 2 lines, you
will not loose points, neither will you get bonus points for doing them):
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Sequence an Series equation rn

Exponential ρn for some ρ > 0 A(z) = 1
1−ρz

Fibonacci numbers A(z) = z
1−z−z2

Catalan numbers A(z) = 1−
√
1−4z
2z

Motzkin numbers A(z) = 1−z−
√
1−2z−3z2

2z2

Schröder numbers A(z) = 1−z−
√
1−6z+z2

2z2

Cayley numbers A(z) = zeA(z)

Rooted trees with 2 or 3 children A(z)
1+A(z)2+A(z)3 = z

Exercise 5 [Bonus – Encoding a set through its sum]
A student is trying to implement something. A set of 10 starting numbers is
given, all of them being 2-digit numbers. From time to time, the user will give
a subset of these numbers, and the student has to store it in the memory of
his computer, in order to give it back to the user later. To spare memory, the
student decides to implement the following method: he will only store the sum
of the numbers that the user gives him (and the student hopes he will find an
algorithm to retrieve the whole subset from its sum).

Show that there is no hope for this method to work, whatever the 10 starting
numbers.

Show that this method works if the starting numbers are {1, 2, 4, 8, 16, 32, 64}.

Submission: 25.06.2025 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]

Exercise 7 [Divisibility of sums]
Fix k integers (not necessarily positive) n1, . . . , nk. Show that there is X ⊆ [k]
such that the sum

∑
i∈X ni is divisible by k.

Hint : Start by looking at n1 + · · · + nj for each j ∈ [k] and wonder what
happens if none of these sums is divisible by k.

Exercise 8 [Fleissner’s grids]
Rotating grids, developed by Colonel Fleissner, were used in a cryptography
method used by the Germans during the First World War. Such a grid consists
of a square with a side length of 6. This square is divided into a grid of 36
smaller equal squares (all with a side length of 1), and 9 of these squares are
removed. The following property must be verified: the holes obtained with the
grid in its initial position, with the grid rotated a quarter turn, a half turn, or
three-quarter turn, never overlap. Thus, all 36 positions can be occupied by a
hole after possibly rotating the grid a quarter, half, or three-quarter turn (and
will be occupied only once).

1. How many such grids can be made?
2. For which values of n can a Fleissner’s n × n grid be made? How many

such grids can be made?

Exercise 9 [Triangles from points in the plane]
Let n > 0 be an integer. Let S be a set of n points in the plane such that any
three distinct points of S are not aligned. Show that there are at most 1

3n(n−1)
equilateral triangles formed by three distinct points in S.

Hint : Double-count the correct set of pairs.

Exercise 10 [Points and circles]
Let n and k be two positive integers. Let S be a set of n points in the plane
such that any three distinct points of S are not aligned, and for every point
p ∈ S, there exists a circle with center p that contains at least k points of S.
Show that k < 1

2 +
√
2n.
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Discrete Mathematics – Solutions Sheet 9

Exercise 1 [Permutations of Multisets]

1. Let b ∈ B. Since φ is surjective, there exists a ∈ A with φ(a) = b.
Furthermore, φ(a) is uniquely determined. Therefore,

⋃
b∈B φ−1(b) = A,

and φ−1(b) ∩ φ−1(b′) = ∅ for b ̸= b′. Hence, the claim follows.

2. We define φ : [n]⟨n⟩ → PM , σ 7→ φ(σ) with φ(σ)(mi) = mσ(i). Obviously,
φ is well-defined and surjective. Let m ∈M be an element with multipli-
city k. For π ∈ PM and σ, σ′ ∈ φ−1(π), it holds that σ′ = σ ◦ τ1 ◦ · · · ◦ τℓ,
where τi is a permutation of {

∑
j<i kj + 1, . . . ,

∑
j≤i kj}. Since there are

exactly ki! such permutations for each i, the claim follows.

3. Combining 1. and 2. gives:

n! =
∣∣∣[n]⟨n⟩∣∣∣ = ∣∣∣∣∣ ∑

π∈PM

φ−1({π})

∣∣∣∣∣ = |PM |
ℓ∏

i=1

ki!

4. An anagram (if we don’t care about meaning) is just a permutation of the
letters of the word. Hence, for the word discretemathematics, we write
the letters as a multiset. There are 18 letters, more precisely 1 a, 2 c, 1
d, 3 e, 1 h, 2 i, 2 m, 1 r, 2 s, 3 t. Consequently, the number of anagrams
of this word is: 18!

1!2!1!3!1!2!2!1!2!3! =
18!
2462 = 11 115 232 128 000.

Exercise 2 [Inclusion-exclusion inequalities]

1. Consider X = {(a, i) ; i ∈ [n], a ∈ Ai}. Clearly, |X| =
∑

i |Ai|, and there
is an injection X →

⋃
i Ai given by (a, i) 7→ a. Hence, |

⋃
i Ai| ≤

∑
i |Ai|.

On the other side, consider a ∈
⋃

i Ai. If a belong to exactly 1 of the
Ais, then it is counted once in the sum

∑
i |Ai| but not counted in the

sum
∑

i ̸=j |Ai ∩Aj |. More generally, if a belong to several of the Ais, say

k(a) of them, the is is counted once in
∑

i |Ai|, and
(
k(a)
2

)
times in the

sum
∑

i̸=j |Ai ∩Aj |. Denoting
(
1
2

)
= 0, we get

∑
i |Ai| −

∑
i ̸=j |Ai ∩Aj | =∑

a∈
⋃

i Ai
1−

(
k(a)
2

)
≤
∑

a∈
⋃

i Ai
1 = |

⋃
i Ai|.

2. Fix m. For K = 1, we have that: (−1)2
(
m
1

)
= m = 1− (−1)1

(
m−1
1

)
. Recall

Pascal’s identity (written weirdly):
(

m
K+1

)
−
(
m−1
K

)
=
(
m−1
K+1

)
. Suppose the
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formula holds for some K, then:

K+1∑
k=1

(−1)k+1

(
m

k

)
= (−1)K+2

(
m

K + 1

)
+

K∑
k=1

(−1)k+1

(
m

k

)
= (−1)K

(
m

K + 1

)
+ 1− (−1)K

(
m− 1

K

)
= 1− (−1)K+1

(
m

K + 1

)
3. Fix K ∈ [n]. The right-hand-side is the usual term in the inclusion-

exclusion principal, except that the sum stops at K instead of n. As for
the proof of the inclusion-exclusion principal, we consider each x ∈

⋃
i Ai,

and count its mutiplicity in the right-hand sum.
Fix x ∈

⋃
i Ai. For T ⊆ [n], the element x contribute to the right-hand

sum if and only if x ∈ AT :=
⋂

i∈T Ai. In the right-hand sum, we only
consider T ⊆ [n] with |T | ≤ K, hence the total contribution of x to the
right-hand sum is

∑
T⊆[n], |T |≤K, x∈AT

(−1)|T |+1. Let m be the number of

indices i such that x ∈ Ai (i.e. m :=
∣∣{i ∈ [n] ; x ∈ Ai}

∣∣), then there

are
(
m
k

)
sets T of size k such that x ∈ AT (for k ≥ 1). Consequently, the

contribution of x rewrites as
∑min(m,K)

k=1 (−1)k+1
(
m
k

)
. If min(m,K) = m,

then this contribution is 1 (see course); else, according to question 2., is it
1− (−1)K

(
m−1
K

)
. The later is bigger than 1 if K is even, and small than 1

if K is odd. Thus, the right-hand sum is bigger than
∑

x∈
⋃

i Ai
1 =

∣∣⋃
i Ai

∣∣
if K is even, and smaller if K is odd. This gives the claimed inequalities.

4. To have an equality case, we need that, for all x, the minimum between
K and m (recall that m is the number of indices i such that x ∈ Ai) is m.
Equivalently, we need that there is no x which belong to (strictly) more
than K different Ai. This is equivalent to the announced sentence.

Exercise 3 [Pocket money with restriction]

1. A way to distribute 30 coins of 1e among 3 children is a equivalent to an
(ordered) partition of 30 into 3 parts. You can write the polynomial form
directly from the course. Or, you can develop:(

30∑
a=0

Xa

)3

=

30∑
a,b,c=0

XaXbXc =

90∑
k=0

( ∑
a+b+c=k

1

)
Xk

The number
∑

a+b+c=k 1 is the number of ways to partition a set of k ele-
ments into 3 parts (where each part can have between 0 and 30 elements).

2. Use the polynomial (X + · · · + X30)3, and re-read the above reasoning,
replacing 0 by 1.

3. Use the polynomial (1 +X + · · ·+X30)2 · (X10 +X11 + · · ·+X30).
4. Use the polynomial (X8 +X9 + · · ·+X30)2 · (1 +X + · · ·+X30).
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5. With a calculator, expand (1 + · · · + X30)3, or consider all the triplets
(a1, a2, a3) where ai ≥ 0 and a1 + a2 + a3 = 30. There are 31 possible
choices for a1, then, once chosen a1, there are 31− a1 choices for a2, and
once fixed a1 and a2, there is only 1 choice of a3. Hence, the total number

of choices is
∑30

a1=0(31− a1) · 1 =
∑31

i=1 i =
31·(31+1)

2 = 31 · 16 = 496 total
possible ways.

Exercise 4 [Radius of convergence and asymptotic behavior]

1. Let r = 1
5 . We have an ≤

(
1
r

)n
for all n, and r is the biggest number such

that this holds. Besides, A(z) =
∑

n≥0(5z)
n = 1

1−5z . For any z > 1
5 , we

have anz
n ̸→ 0 when n → +∞, so the series tends towards +∞ (note

that A(z) is negative in this case, which would be a problem for a series
counting positive integers); for any z < 1

5 , the series tends towards A(z)
(which is finite and positive). Note that A( 15 ) is not well-defined.

2. By definition of r, for any z strictly bigger than r, we have that anz
n ≥ 1

for infinitely many values of n. Consequently, the series
∑

n anz
n is lower

bounded by the sum of infinitely many 1s: it tends towards +∞.
3. Let z < r, and pick n◦ such that any

n ≤ 1 for any n ≥ n◦:∑
n

anz
n =

∑
n

anr
n
(z
r

)n
≤

n◦∑
n=0

anz
n +

∑
n≥0

1 ·
(z
r

)n
=

n◦∑
n=0

anz
n +

1

1− z
r

Hence the series
∑

n anz
n converges (note that the left sum is finite). (To

be really correct, we can define the radius to be the supremum of all y such

that an ≤
(

1
y

)n
for n big enough, and re-do the above proof multiplying

by yn

yn for some y with z < y < r.)
4. Justifications are below the table: the main idea is to compute the mini-

mum “pole” of A(z), e.g. the minimum z such that A(z) = +∞ or A(z)
contains the square root of a negative number, etc.
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Sequence an Justification rn

Exponential ρn for some ρ > 0 A( 1ρ ) = +∞ ρn

Fibonacci numbers min root ≥ 0 of 1− z − z2 is −1+
√
5

2

(
2

−1+
√
5

)n
=
(

1+
√
5

2

)n
Catalan numbers

√
1− 4z undefined for z > 1

4 4n

Motzkin numbers
√
1− 2z − 3z2 for z > 1

3 3n

Schröder numbers
√
1− 6z + z2 undefined for 3− 2

√
2 < z < 3 + 2

√
2

(
1

3−2
√
2

)n
=
(
3 + 2

√
2
)n

Cayley numbers see below (a) en

Rooted trees with 2 or 3 children see below (b) ≤ 2.611n

(·) Imagine that, for some function f , we have f(A(z)) = z, hence
A(z) = f−1(z) where the reciprocal f−1 is defined. The smallest
z such that f−1 is not-defined is the smallest z such that f(z) is a
value already attained by f(x) for some x < z. This is the case for
z = z◦ + ε where f ′(z◦) = 0 and ε > 0 is arbitrarily small (make
a drawing). Hence, the radius of (an)n is r = 1

f(z◦)
where z◦ is the

minimum value such that f ′(z◦) = 0 (you actually need some more
requirements, see “implicit functions” for the correct mathematical
statements, but this is sufficient here).

(a) Here f(x) = x
ex , and f ′(x) = 1−x

ex , hence f ′(1) = 0, and we have
f(1) = 1

e , so the radius is e.

(b) Here, f(x) = x
1+x2+x3 , so f

′(x) = 1−x2−2x3

(1+x2+x3)2 . The polynomial 1−x2−
2x3 as only one real root z◦, approximately 0.657, and 1

f(z◦)
≈ 2.611.

Exercise 5 [Bonus – Encoding a set through its sum]
For a set of numbers A, let S(A) =

∑
a∈A a denote the sum of the numbers in

A. For a set A of size at most 10, composed of numbers with 2 digits, we have:
S(A) ≤ S({99, 98, 97, . . . , 90}) = 945. Now, let fix a set X of starting numbers,
and consider all subsets A ⊆ X. As |X| = 10, there are 210 = 1024 such subsets
A. If any subset A can be retrieved just by knowing its sum S(A), that means
that S is injective on the subsets of X (i.e. no two different subsets of X share
the same sum). This implies that S maps 210 = 1024 elements (all the subsets
of X) to at most 945 images (all the possible sums of a set of size at most 10).
Hence, S cannot be injective, and it will be impossible to retrieve every subset
A from the knowledge of X and S(A), whatever the X chosen.

If X = {1, 2, 4, 8, 16, 32, 64}, not only |X| = 7, but also the starting numbers
are the powers of two. As the writing of any number in binary form is unique
and well-defined, the knowledge of the sum is enough to recover the subset (and
all sums between 0 and 127 are possible).
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You can now try to find X of sizes 8 and 9, containing 2-digit numbers, such
that no two subsets share the same sum, or prove it does not exist.
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Exercise Sheet 10

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Inversion]
Recall that xn = x(x− 1)(x− 2)...(x− n+ 1).

For k, n ∈ N, the Stirling numbers of the first kind s(n, k) can be defined by
the following polynomial equation

Xn =

n∑
k=0

(−1)n−ks(n, k)Xk.

1. Let m,n ≥ 1. Show that the number of functions f : [n]→ [m] is:

mn =

n∑
k=0

S(n, k)mk.

2. Conclude from 1. that the Stirling numbers of the second kind satisfy the
following polynomial equation:

Xn =

n∑
k=0

S(n, k)Xk.

3. Prove Stirling’s inversion formula: For two sequences (un)n≥0, (vn)n≥0,
we have:

vn =

n∑
k=0

S(n, k)uk for all n ≥ 0

if and only if

un =

n∑
k=0

(−1)n−ks(n, k)vk for all n ≥ 0.

4. Conclude that∑
k≥0

S(n, k)(−1)k−ms(k,m) =

{
1 if n = m,

0 if n ̸= m.

99



Exercise 2 [Words with requirements]
Consider the words (i.e. finite sequences) of length n we can write with the
letters a, b, c, requiring that the number of a used is even, the number of b is
odd, and the number of c can be whatever we want. Let wn the number of such
words, and W (z) =

∑
n≥0 wn

zn

n! the associate exponential generating function.
1. Compute wn for n ≤ (recall that 0 is even and not odd).
2. Let A(z) be the exponential generating series of the number of words of

length n with an even number of a (and no b nor c). Define B(z) and C(z)
accordingly, and prove that W (z) = A(z) ·B(z) · C(z).

3. Show that C(z) = ez, then A(z) = 1
2 (e

z + e−z), and B(z) = 1
2 (e

z − e−z).
4. Deduce W (z) and wn.

Exercise 3 [Cayley numbers]
Questions 1. and 2. are here for giving you a complete understanding of the
subject: you will not earn points for doing them, and you will not loose points
by not doing them. You can read through the text, and start at question 3.

Let C be a collection of infinitely many distinct objects (e.g. graphs, sub-sets,
paths) each of them having a certain size (e.g. number of vertices, cardinal,
length) which is a integer number. Let Ci be the collection of lists in C of length
i, and ci = |Ci|. Let C(z) =

∑
n≥0 cnz

n be the associated (ordinary) generating
function, and Γ(z) =

∑
n≥0

cn
n! z

n the associated exponential generating series.

1. Show that the coefficient of zn in the series C(z)k is the number of
sequences of objects (α1, . . . , αk) where αi ∈ C, such that the sizes of
α1, . . . , αk sum to n.

2. Deduce that the coefficient of zn in 1
1−C(z) counts the number of sequences

of objects from C whose sizes sum to n.
3. Show that the coefficient of zn

n! in the series 1
k!Γ(z)

k is the number of way
to pick a partition of [n] into k parts and to associate each part P of this
partition to some α ∈ C|P |. (Recall that parts in a partition are not ordered.)

4. Deduce that the coefficient on zn in eΓ(z) is the number of ways to pick a
partition of [n] and associate each part P of this partition to some α ∈ C|P |.

You have already seen applications of the above theorem on (ordinary) ge-
nerating functions. Let an be the number of ways to construct a wall of length
n and height 2 using dominoes, which can be placed vertically or horizontally.
Here, a wall a sequence formed from the collection C = { , }. The size of a
domino is its horizontal width (because we want a wall of width n): the size of
is 1, and is 2. Thus C(z) = z + z2, and A(z) = 1

1−C(z) = 1
1−z−z2 which is

indeed the (ordinary) generating function of Fibonacci numbers.
The next questions are about an application of the second theorem.
5. Consider trees on vertices [n] with one vertex marked in red (and the other

in black). We call T the collection of all labeled marked trees without size
restriction. Show that there is a bijection between labeled marked trees
on n vertices, and partitions of [n− 1] where each part P of the partition
is associated with a tree on |P | vertices.
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6. Deduce that the exponential generating series T (z) of labeled marked trees
satisfies:

T (z) = z eT (z)

One can deduce that there are nn−1 labeled marked trees on n vertices, and
nn−2 labeled trees (where all the vertices have the same color).

Exercise 4 [Passwords with few zeros]
Let f(n) be the number of numeric codes (i.e. passwords) of length n consisting
only of the digits 0, 1, and 2, in which no two zeros occur consecutively.

1. Let f(0) = 1. Provide a recursive equation for f(n), justify your answer.
2. Compute

∑
n≥0 f(n)x

n. If you did not provide a recursive equation in part 1.,

alternatively use the equation f(n) = 3f(n− 1) + 2f(n− 2) with f(0) = 1 and

f(1) = 2. Note that this equation does not correspond to the solution from 1.!

3. Use your results from 2. to deduce a sequence an in terms of f(n) satisfying∑
n≥0

anx
n =

1

1− 2x− 2x2

If you used the alternative equation in part 2., instead determine a sequence an

in terms of f(n) such that
∑

n≥0 anx
n = 1

1−3x−2x2 .

Exercise 5 [Bonus – Fibonacci numbers and exam sheets]
You organize an exam with 20 questions. Each question can be answer either
“True” or “False”. For each question, you grade the 17 712 students. At the end,
you realize sadly that no students managed to answer correctly to 2 consecutive
questions.

Something troubles you, however: two students gave exactly the same ans-
wers to all the questions... Is it normal, or should you look further into the
details to see if they have cheated?

Hint: You should start by counting recursively the number of sequences in {0, 1}n with no

consecutive 1s, then invoke an Italian mathematician born around 1170.

Submission: 02.07.2025 before 23:59

101



Tutorium additional exercises

Exercise 6 [With ChatGPT]

Exercise 7 [Even and odd parts]
We show in two ways that [n] has as many sub-sets of even size, as it has sub-sets
of odd size.

1. Show that
∑

A⊆[n], |A| even 1 −
∑

A⊆[n], |A| odd 1 =
∑n

k=0(−1)k
(
n
k

)
= 0,

and conclude.
2. Fix x ∈ [n]. Show that the following application f is a bijection between

the collection of even sub-sets and the collection of odd sub-sets:

f : A 7→
{

A ∪ {x} if x /∈ A
A\{x} if x ∈ A

Exercise 8 [Number of solution of a degree 1 equation]
Let an,d be the number of solutions of the equation x1 + · · ·+ xn = d, where xi

is a (non-negative) integer for each i. We want to compute an,d.
Let E be the set of solutions: E = {(x1, . . . , xn) ∈ Nn ; x1 + · · ·+ xn = d}.
Let F be the set of strictly increasing sequences 0 < y1 < · · · < yn = n+ d.
Let G be the set of sub-sets of {1, . . . , n+ d− 1} of size n− 1.
1. Compute a1,d, a2,d, an,0 and an,1.
2. Find a bijection between E and F .
3. Find a bijection between F and G.
4. Compute an,d.
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Discrete Mathematics – Solutions Sheet 10

Exercise 1 [Inversion]

1. The number of all functions f : [n] → [m] is given by mn, as a result
from the lecture. For the right-hand side of the given equality, we count
the desired functions in another way. If f : [n] → [m] is a function, then
f is surjective as a function from [n] to Im(f). The latter is always a
non-empty subset of [m]. Classifying functions by their images, we get

mn =
∑

A⊊[m]

|{f : [n]→ A surjective}|

=
∑

A⊊[m]

S(n, |A|) · |A|!

=

m∑
k=0

∑
A∈(mk )

S(n, k) · k!

=

m∑
k=0

m(m− 1) · · · (m− k + 1)S(n, k),

which proves the assertion. Here, we used for the third equality that
S(n, 0) = 0.

2. We note that both sides of the polynomial equation to be shown are po-
lynomials in X of degree n. Two such polynomials are equal if they agree
at n+ 1 points. From (i), the two polynomials already agree on N, which
proves the assertion.

3. {1, X, . . . ,Xn}, as well as {1, X,X(X − 1), . . . , X(X − 1) · · · (X −n+1)},
are each bases of the vector space of polynomials of degree ≤ n. The
corresponding basis transformations are achieved using the matrices
((−1)m−ks(m, k))1≤m≤n

1≤k≤n
and (S(m, k))1≤m≤n

1≤k≤n
. The assertion thus follows

directly from Theorem 2.9 (Inversion) of the lecture.

4. Since the matrices T = ((−1)m−ks(m, k))1≤m≤n
1≤k≤n

and S = ((S(m, k))1≤m≤n
1≤k≤n

are the two basis change matrices between the bases {1, X, . . . ,Xn} and
{1, X,X(X − 1), . . . , X(X − 1) · · · (X − n+ 1)}, they are inverses of each
other and it holds that S · T = En, where En denotes the (n×n) identity
matrix. For the multiplication of the n-th row of S and the m-th column
of T , we get directly

∑
k≥0

S(n, k)(−1)k−ms(k,m) =

{
1 if n = m,

0 if n ̸= m.
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Exercise 2 [Words with requirements]

1. Here are all the possible words with ≤ 3 letters with these requirements:
b,
bc, cb,
aab, aba, baa, bcc, cbc, ccb, bbb,
Hence, w0 = 0, w1 = 1, w2 = 2, w3 = 7.

2. Consider only two requirements, say on a and on b, with associated expo-
nential generating series A(z) and B(z). Then

A(z) ·B(z) =
∑

p,m≥0

apbm
zp+m

p!m!
=
∑
n≥0

(∑
k

akbn−k
n!

k!(n− k)!

)
zn

n!

The middle parenthesis
∑

k akbn−k

(
n
k

)
counts the number of way to form

a word of length n with both requirements on a and on b (first choose k,
then choose which k among the n letters will be as, then complete by the
number of words of length k with letters a, and the number of words of
length n− k with letters b). Consequently, A(z) · B(z) · C(z) = W (z), as
desired.

3. We have cn = 1 for all n, hence C(z) =
∑

n≥0
zn

n! = ez. Besides, we

have an =

{
1 if n even
0 if n odd

= 1
2

(
1 + (−1)n

)
, hence we get the series

A(z) = 1
2

∑
n≥0

(
1 + (−1)n

)
zn

n! = 1
2 (e

z + e−z). By the same method, we

have B(z) = 1
2 (e

z − e−z).
4. Last but not least:

W (z) = ez · 1
2
(ez + e−z) · 1

2
(ez − e−z) =

1

4
(e3z − e−z)

Extracting the coefficient from W (z), we get wn = 1
4 (3

n − (−1)n). Please
check that n = 0, 1, 2, 3 gives back the values of question 1.

Exercise 3 [Cayley numbers]

1. Firstly, we have:

C(z)k =
∑

i1,i2,...,ik≥0

ci1ci2 . . . cikz
i1+i2+···+ik =

∑
n≥0

( ∑
i1+i2+···+ik=n

ci1ci2 . . . cik

)
zn

On the other hand, a sequence of length k of object in C whose sizes sum
to n is of the form (α1, α2, . . . , αk), where αi ∈ Ci and i1 + i2 + · · · +
ik = n. Hence the number of such sequences is indeed counted by the big
parenthesis above.

2. We have 1
1−C(z) =

∑
k≥0 C(z)k, so the coefficient on zn in 1

1−C(z) counts

the number of sequences of objects whose sizes sum to n, without any
restriction on the length of the sequence.
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3. Firstly, we have:

Γ(z)k =
∑

i1,i2,...,ik≥0

ci1ci2 . . . cik
zi1+i2···+ik

i1!i2! . . . ik!

=
∑
n≥0

( ∑
i1+i2+···+ik=n

ci1ci2 . . . cik
n!

i1!i2! . . . ik!

)
zn

n!

On the other side, how many ordered partitions of [n] with k parts asso-
ciated to elements of C are there? To construct such an ordered partition
P amounts to (1) the choice of a partition into parts P1, P2, . . . , Pk of
cardinals i1, i2, . . . ik; and (2) the choice of α1 ∈ Ci1 , of α2 ∈ Ci2 , . . . , of
αk ∈ Cik .
The choice in (1) is counted by

(
n
i1

)(
n−i1
i2

)
. . .
(
n−i1−i2−···−ik−1

ik

)
= n!

i1!i2!...ik!
.

The choice in (2) is counted by ci1ci2 . . . cik .
Hence, the coefficient on zn

n! in Γ(z)k counts the number of ordered par-
titions of [n] with k parts together with an element of C associated to
each part so that the size of the element matches the cardinal of the part.
Dividing by k! amounts to un-ordering the partition.

4. We have eΓ(z) =
∑

k≥0
1
k!Γ(z)

k, so the coefficient on zn

n! in eΓ(z) counts the
number of partitions of [n] with objects associated with its parts (where
size = cardinal), without restriction on the number of parts.

5. Consider a labeled marked tree t on n vertices, remove the red vertex, and,
in the meanwhile, mark in red the neighbors of this red vertex. This yields
a forest: equivalently a set of labeled marked trees. Looking at the vertex
set of each tree in this forest, we get a partition of [n− 1] (“−1” because
we removed the red vertex) where each part is associated to some labeled
marked tree with as many vertices as elements in the part. Reciprocally,
given a partition of [n−1] and an association of each part Pi with a labeled
marked tree ti of size |Pi|, we can construct a labeled marked tree on n
vertices by, first, adding a red vertex, then linking the marked vertex of
each tree ti to it. This gives the desired bijection (make drawings!).

6. According to question 2., the coefficient on zn−1 of eT (z) is the number of
partitions of [n− 1] together with labeled marked trees associated to each
parts. The coefficient on zn−1 of 1

zT (z) is the number of labeled marked
trees on n vertices. According to question 5., these are the same numbers.
Thus: 1

zT (z) = eT (z).

Exercise 4 [Passwords with few zeros]

1. Let’s consider the first digit. If it is 1 or 2, we can append it to any code
of length n− 1, giving f(n− 1) options. If it is 0, the next digit must be
1 or 2, and we can choose the rest in f(n− 2) ways. So:

f(n) = 2(f(n− 1) + f(n− 2)).

Also, f(0) = 1, f(1) = 3.
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2. We have:∑
n≥0

f(n)xn =
∑
n≥2

(2f(n− 1) + 2f(n− 2))xn + f(0) + f(1)x

= 2
∑
n≥2

f(n− 1)xn + 2
∑
n≥2

f(n− 2)xn + 1 + 3x

= 2
∑
n≥1

f(n)xn+1 + 2
∑
n≥0

f(n)xn+2 + 1 + 3x

= 2x
∑
n≥1

f(n)xn + 2x2
∑
n≥0

f(n)xn + 1 + 3x

= 2x
∑
n≥0

f(n)xn − 2x+ 2x2
∑
n≥0

f(n)xn + 1 + 3x

= (2x+ 2x2)
∑
n≥0

f(n)xn + 1 + x.

Therefore:

(1− 2x− 2x2)
∑
n≥0

f(n)xn = 1 + x ⇔
∑
n≥0

f(n)xn =
1 + x

1− 2x− 2x2
.

Alternative:∑
n≥0

f(n)xn =
∑
n≥2

(3f(n− 1) + 2f(n− 2))xn + f(0) + f(1)x

= 3
∑
n≥2

f(n− 1)xn + 2
∑
n≥2

f(n− 2)xn + 1 + 2x

= 3
∑
n≥1

f(n)xn+1 + 2
∑
n≥0

f(n)xn+2 + 1 + 2x

= 3x
∑
n≥1

f(n)xn + 2x2
∑
n≥0

f(n)xn + 1 + 2x

= 3x
∑
n≥0

f(n)xn − 3x+ 2x2
∑
n≥0

f(n)xn + 1 + 2x

= (3x+ 2x2)
∑
n≥0

f(n)xn + 1− x.

Therefore:

(1− 3x− 2x2)
∑
n≥0

f(n)xn = 1− x ⇔
∑
n≥0

f(n)xn =
1− x

1− 3x− 2x2
.
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3. We have:

1

1− 2x− 2x2
=

1 + x

1− 2x− 2x2
· 1

1 + x

=
∑
n≥0

f(n)xn ·
∑
n≥0

(−1)nxn

=
∑
n≥0

(
n∑

k=0

f(k)(−1)n−k

)
xn.

So,

an =

n∑
k=0

f(k)(−1)n−k = (−1)n
n∑

k=0

f(k)(−1)k.

Alternative:

1

1− 3x− 2x2
=

1− x

1− 3x− 2x2
· 1

1− x

=
∑
n≥0

f(n)xn ·
∑
n≥0

xn

=
∑
n≥0

(
n∑

k=0

f(k)

)
xn.

So,

an =

n∑
k=0

f(k).

Exercise 5 [Bonus – Fibonacci numbers and exam sheets]
We count recursively the number of sequences of 0 and 1 with no consecutive
1s. Let Sn = {sequences of length n with no consecutive 1s}.

Consider such a sequence s of length n. We associate to s a sequence s′

defined as: if s finishes by a 0, then s′ is obtained from s be removing this
last 0; if s finishes by a 1, then the digit before is a 0 (because there are no
consecutive 1s), and s′ is defined by removing 01 for the end of s. This association
yields a bijection between Sn and the disjoint union Sn−1∪Sn−2. Consequently,
|Sn| = |Sn−1|+|Sn−2|. This is the Fibonacci recursion! As |S1| = 2 and |S2| = 3,
we get that |Sn| = Fn+2 is the (n+ 2)th Fibonacci number.

In particular, |S20| = F22 = 17 711. As we have 17 712 exam sheets (which is
quite a lot, I hope I have an automatic corrector), by the pigeon-hole principle,
there are at least two exam sheets which yields the same sequence of True-False
answers: two students who seem to have copied each other but did not.
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Exercise Sheet 11

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Subsets with distances]
Let an be the number of subset X ⊆ [n] such that for any i, j ∈ X, if |j− i| < 3,
then i = j.

1. Find an equation involving some of the numbers an, an−1, an−2, an−3.
2. Deduce the (ordinary) generating function of the an.
3. By computing its derivative, show that the polynomial function x 7→ 1−

x− x3 has exactly 1 real root x◦.
4. Show: 0 < x◦ < 1. Deduce that the two other (complex conjugated) roots

of 1− x− x3 have a module > 1. Hint: It is an exercise on combinatorics...

Exercise 2 [Catalytic variables and fountains]
A (n, k)-fountain is a collection of n circles of radius 1 (called coins), gathered
into rows of tangent coins such that the bottom most row (called the base) is
made of k tangent coins, and each other coin is tangent to exactly 2 coins of the
previous row, see Figure 20.

Let fn,k be the number of (n, k)-fountains, let fn be the number of fountains
of n coins, and ck be the number of fountains whose basis has k coins. We want
to compute F (x) =

∑
n≥0 fnx

n.
1. Draw all fountains with 5 coins.
2. Let gn,k be the number of fountains with n coins and whose basis has

k coins, and such that the second row contains k − 1 coins. Define the
series F (x, t) =

∑
n,k≥0 fn,kx

ntk and G(x, t) =
∑

n,k≥0 gn,kx
ntk. Show

gn,k = fn−k,k−1, and deduce: G(x, t) = xtF (x, xt).
3. By considering the first missing coin in the second row of a fountain, show

that F (x, t) = 1 + F (x, t) ·G(x, t).
4. Deduce that:

F (x, t) =
1

1− xt

1− x2t

1− x3t
...

and F (x) =
1

1− x

1− x2

1− x3
...
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Abbildung 20: All fountains whose basis has 4 coins

5. Show that ck is a Catalan number by constructing a bijection between
fountains whose basis has k coins, and Dyck paths of a certain length.

Deduce that 1
1− t

1− t
1− t

...

= 1−
√
1−4t
2t .

Hint: Consider the coins which are not covered by other coins, and link there centers.

Exercise 3 [Motzkin paths]
A Motzkin path of length n is a path P =

(
(0, y0), (1, y1), . . . , (n, yn)

)
from

(0, 0) to (n, 0) where yi − yi−1 ∈ {−1, 0,+1}, and yi ≥ 0 for all i. We denote
by mn the number of Motzkin paths of length n, and M(z) =

∑
n≥0 mn z

n the
associated generating series.

1. Draw all Motzkin paths of length 2, 3 and 4.
2. Show that there is a bijection between Motzkin paths of length n with

y1 = 0, and Motzkin paths of length n− 1.
3. Using the ideas you have seen on Dyck paths, show that there is a bijection

between Motzkin paths with y1 > 0, and pair of Motzkin paths (Q,Q′)
where the length of Q and Q′ sum to n− 2.
Hint: Consider i◦ ≥ 1 to be the smallest index such that yi◦ = 0, and split accordingly.

4. Deduce that M(z) = z2M(z)2 + zM(z) + 1.
5. Solve the equation and obtain:

M(z) =
1

2z2

(
1− z −

√
1− 2z − 3z2

)

Exercise 4 [Non-self-intersecting paths]
Let an be the number of non-self-intersecting paths in Z2 with n steps, starting
at the point (0, 0), and allowing only steps in the directions North N , East E,
and West W . (N = (1, 0), E = (0, 1), W = (0,−1)). Let a0 = 1.

1. Show that a1 = 3, and that for n ≥ 2, we have:

an = 2an−1 + an−2

2. Deduce polynomials P (z), Q(z), with Q(z) of minimal degree, such that:

fa(z) =
∑
n≥0

anz
n =

P (z)

Q(z)
,
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3. Give an explicit formula for an.
4. How many paths are there if the restriction that paths must not intersect

themselves is dropped?

Exercise 5 [Bonus – Decimal expansion]
For some random reason, you write 0.5−

√
0.249 in your favorite calculator, and

you see appearing:
0. 001 001 002 005 014 042 132 . . .

As you have listen to the course very carefully, you realize this resemble the
beginning of the sequence of Catalan numbers: 1, 1, 2, 5, 14, 42, 132, . . . .

Sadly, the 3 next digits of the decimal expansion of 0.5 −
√
0.249 are 430,

whereas the next Catalan number is 429.
Trying your best luck, you ask your calculator for 0.5−

√
0.2499, and see:

0. 0001 0001 0002 0005 0014 0042 0132 0429 1430 4863 . . .

All except the last 4 digits of the above decimal expansion match with Ca-
talan numbers!

Explain why, in the decimal expansion of 0.5−
√
2499 . . . 99 (where there is

n times the digit 9), you will see all Catalan numbers on n + 2 digits or less,
except the last one.

Submission: 09.07.2025 before 23:59
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Tutorium additional exercises

Exercise 6 [With ChatGPT]

Exercise 7 [Partitions and modulo]
Let p(n) be the number of integer partitions of n (i.e. the number of ways to
write n as a sum of integers). We want to prove that p(5m + 4) is divisible by
5 for all m ≥ 0.

For two generating functions A(z) =
∑

n≥0 anz
n and B(z) =

∑
n,≥0 bnz

n,
we say that A(z) ≡ B(z) [k] if, for all n, we have an ≡ bn [k] (where a ≡ b [k]
means that b− a is divisible by k). The symbol ≡ between generating functions
can be manipulated as usual: if A(z) ≡ B(z) [k] and C(z) ≡ D(z) [k], then
A(z) + C(z) ≡ B(z) + D(z) [k] and A(z) · C(z) ≡ B(z) · D(z) [k], and so on.
We will assume that all the infinite sums and products used in this exercise
converges.

1. Recall the generating function of p(n).
2. Write 1

(1−z)k
as a sum, then prove that 1

(1−z)5 ≡
1

1−z [5].

3. Deduce that (1−z5)(1−z10)(1−z15)...(
(1−z)(1−z2)(1−z3)...

)5 ≡ 1 [5].

4. Show that 5 divides the coefficient on z5m+5 in z ·
(
(1− z)(1− z2) . . .

)4
.

Very hard question

5. Using the next equation, prove that 5 divides p(5m+ 4) for all m ≥ 0:∑
n≥1

p(n−1)zn = z
(
(1−z)(1−z2) . . .

)4 · (1− z5)(1− z10) . . .(
(1− z)(1− z2) . . .

)5 · (1+z5+z10+. . . )(1+z10+z20+. . . ) . . .

Exercise 8 [Dyck path area and pointed series]
The area of a Dyck path P is the number of integer points in N × N that are
under or on the Dyck path P. For example, the path

(
(0, 0), (1, 1), (2, 0)

)
has

area 4. We denote by bn the sum over all Dyck paths of length 2n, of their area.
1. Draw all Dyck paths of length 2 · 3, and compute their length.
2. Show that, equivalently, bn is the number of couples (P, x) where P is a

Dyck path, and x is a point of N× N under or on the path P.
3. Write the usual recursive decomposition of Dyck paths, then write a ver-

sion for the number of pairs (P, x) where P is a Dyck path and x a point
under or on it.

4. Suppose a combinatorial class C = (C1, . . . ) is counted by the genera-
ting series C(z) =

∑
k≥0 ck z

k. we define the pointed class C• as C•k =
{(γ, i) ; γ ∈ Ck, i ∈ [k]}. Determine the generating series of C• depending
of C(z). (Hint: Derivatives are useful.)

5. Write a functional equation connecting the generating series B(z) of the
sequence (bn)n∈N, and the generating series D(z) of Dyck paths.

6. Give one (or more) proof(s) of the fact that bn = 4n, using a clever bijec-
tion.
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7. (Re)deduce the series D(z).

Exercise 9 [Narayana numbers]

For a Dyck path P =
(
(0, y0), (1, y1), . . . , (2n, y2n)

)
, an index i ∈ [1, 2n − 1]

is a peak if yi−1 < yi > yi+1. We denote by p(P) the number of peaks of
the Dyck path P. We want to determine the generating series in two variables
N(z, t) =

∑
n≥0

∑
k≥0 Nn,k t

kzn, where Nn,k is the number of Dyck paths of
length 2n with k peaks. The numbers Nn,k are called the Narayana numbers.

1. Compute the Narayana numbers N(4, k) for all k, by drawing all involved
Dyck paths.

2. For a Dyck path P, let i◦ be the smallest index such that y2i◦ = 0 and
i◦ > 0. Show that there is a bijection between Dyck paths P of length 2n
with k peaks and i◦ = n, and Dyck paths of length 2(n− 1) with k peaks.

3. Show that there is a bijection between Dyck paths P of length 2n with k
peaks and i◦ < n, and pairs of Dyck paths (Q,Q′) where the sum of the
length of Q and Q′ is 2(n− 1), and the sum of the number of peaks of Q
and Q′ is k, and Q′ is not of length 0.

4. Deduce that N(z, t) = 1 + zN(z, t) + tzN(z, t)
(
N(z, t)− 1

)
.

5. Solve the equation to obtain:

N(z, t) =
1

2tz

(
1 + z(t− 1)−

√
1− 2z(t+ 1) + z2(t− 1)2

)
6. Conclude that:

Nn,k =
1

n

(
n

k

)(
n

k − 1

)
7. (Sanity check) When t = 1, one should obtain the usual Catalan numbers.

Replace t by 1 in the equation above and verify that you get the equation
for the Catalan generating series. Deduce

∑
k

(
n
k

)(
n

k−1

)
.

This last sum can be computed far more directly via Chu-Vandermonde identity.

Exercise 10 [Schröder paths]
Let fn be the number of paths

(
(x0, y0), (x1, y1), . . . , (xr, yr)

)
such that (xi+1−

xi, yi+1 − yi) ∈
{
(1, 0), (1, 1), (0, 1)

}
, and (x0, y0) = (0, 0), and (xr, yr) = (n, n),

and xi ≥ yi for all i. Such a path is called a Schröder path of size n. The number
of them is denoted sn, and the associated generating series is S(z) =

∑
n≥0 sn z

n.
1. Draw all Schröder paths of size n ≤ 4.
2. Let i◦ be the smallest index such that i◦ > 0 and xi◦ = yi◦ . Show that

there is a bijection between Schröder paths of size n with i◦ = 1, and
Schröder paths of size n− 1.

3. Show that there is a bijection between Schröder paths of size n with i◦ ̸= 1,
and pairs of Schröder paths (Q,Q′) where the sum of their size is n− 1.

4. Deduce that S(z) = zS(z)1 + zS(z) + 1.
5. Solve the equation to obtain:

S(z) =
1

2z2

(
1− z −

√
1− 6z + z2

)
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Exercise 11 [Words avoiding words]
Fix an alphabet A (i.e. a finite set) with m = |A| ≥ 2. A word on A is an ordered
sequence p = (p1, p2, . . . , pr) where pi ∈ A. The length of p is r.

1. How many words of length 5 are there on the alphabet containing 3 letters
A = {a, b, c}?

2. Let m be the cardinal of A. How many words of length r are there.
3. Write the generating series

∑
r≥0 ar z

r where ar is the number of words
of length r.

Fix a word p of length r. We say that p is i-self-correlated for some 0 ≤ i < r
if (pi+1, pi+2, . . . , pr) = (p1, p2, . . . , pr−i), where all the indices are considered
modulo r. We denote ci = 1 if p is i-self-correlated, and ci = 0 else; and construct
the polynomial of self-correlation c(z) =

∑r−1
i=0 ci z

i.
4. Compute the polynomial of self-corelation for the word p = (a, a, b, b, a, a).
5. Fix a word p. Consider another word q = (q1, . . . , qs). The r-final sub-

word of q is (qs−r+1, . . . , qs). Using c(z), determine the generating series
(per length) of the words q on the alphabet A such that p is equal to the
r-final sub-word of q, but is not equal to any other sub-word of q.

6. Show that the generating series (per length) of the words q on the alphabet
A which avoid p (i.e. p is not a sub-word of q) is:

S(z) =
c(z)

zr + (1−mz)c(z)

Exercise 12 [Lagrange inversion theorem]
Let F : z 7→

∑
k≥0 fkz

k be a function, with f0 = F (0) ̸= 0. Suppose the

generating series A(z) =
∑

n≥0 anz
n satisfies A(z) = F

(
A(z)

)
. We admit that,

in this case, an is equal to the coefficient on zn−1 in 1
nF (z)n. This is called

Lagrange inversion theorem.
1. Using Lagrange inversion, compute the number of labeled marked trees,

whose exponential generating series T (z) =
∑

n≥0
an

n! z
n satisfies T (z) =

z eT (z).
2. Recall that the generating series of Catalan numbers C(z) =

∑
n≥0 Cnz

n

satisfies C(z) = C(z)2 +1. Using Lagrange inversion on the series B(z) =
C(z)−1, find (once again) the formula for Catalan numbers: Cn = 1

n+1

(
2n
n

)
.

Exercise 13 [Eulerian numbers]
Some more questions to come...

Let An,k be the ..........

Exercise 14 [Height on Dyck paths]

For a Dyck path P =
(
(0, y0), (1, y1), . . . , (2n, y2n)

)
, the height of the path is

defined as h(P) = maxi yi. We want to determine the generating series in two
variables A(z, t) =

∑
n≥0

∑
k≥0 an,k t

kzn, where an,k be the number of Dyck
paths of length 2n and height at most k.
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1. For a Dyck path P, let i◦ be the smallest index such that y2i◦ = 0 and
i◦ > 0. Show that there is a bijection between Dyck paths P of length 2n
with height ≤ k, and pairs of Dyck paths (Q,Q′) where the sum of the
length of Q and Q′ is 2(n− 1), and h(Q) ≤ h(P)− 1, and h( Q′) ≤ h(P).

2. Deduce that an,k =
∑n−1

j=0 aj,k an−1−j,k−1.
3. Some more questions to come...
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Discrete Mathematics – Solutions Sheet 11

Exercise 1 [Subsets with distances]

1. Let Xn be the collection of all subsets X ⊆ [n] such that for any i, j ∈ X,
if |i − j| < 3, then i = j. Fix X ∈ Xn: either n ∈ X or n /∈ X. If
n ∈ X, then both n − 1 /∈ X and n − 2 /∈ X. Let Y = X ∩ [n − 3],
we have X = {n} ∪ Y and Y ∈ Xn−3. Reciprocally, for all Y ∈ Xn−3,
we have

(
{n} ∪ Y

)
∈ Xn. If n /∈ X, then X ∈ Xn−1. Hence there is a

bijection between Xn and Xn−1 ∪Xn−3. This yields an = an−1 + an−3, or
equivalently an − an−1 − an−3 = 0.

2. Thanks to the theorem on linear recursions, we get thatA(z) =
∑

n≥0 anz
n =

P (z)
1−x−x3 , where P is a polynomial of degree 2 (or less). To get P , we need to
compute A(z) more in details (simply enumerating the possibilities gives
a0 = 1, a1 = 2, a2 = 4):

A(z) = 1 + 2z + 4z2 +
∑
n≥3

(an−1 + an−3)z
n

= 1 + 2z + 4z2 + z
∑
n≥3

an−1z
n−1 + z3

∑
n≥3

an−3z
n−3

= 1 + 2z + 4z2 + z
(
A(z)− 1− 2z

)
+ z3A(z)

= 1 + 2z + 4z2 + z
(
A(z)− 1− 2z

)
+ z3A(z)

⇒ A(z) =
1 + z + 2z2

1− z − z3

3. The derivative of x 7→ 1 − x − x3 is x 7→ −1 − 3x2 which is negative for
all x ∈ R. Consequently, x 7→ 1 − x − x3 is strictly decreasing on R. As
this polynomial tends to +∞ when x → −∞, and tends to −∞ when
x → +∞, its crosses the x-axis exactly once: the polynomial 1 − x − x3

has 1 real root.
4. For x = 0, we have 1−x−x3 = 1 > 0, and for x = 1, we have 1−x−x3 =
−1 < 0, so, according to the previous question, the unique real root of
1− x− x3 is between 0 and 1. Now, recall that an = c1α

n
1 + c2α

n
2 + c3α

n
3

where α1, α2 and α3 are the roots of the polynomial 1 − x − x3 (and
c1, c2, c3 are real numbers). If |α1| < 1 and |α2| < 1 and |α3| < 1, then
an → 0.
As we have establish that the real root of 1 − x − x3 is of absolute value
< 1. Yet, an → +∞ (because it counts a number of sub-sets which clearly
goes to infinity). Thus at least one of the complex roots is of module > 1.
As the complex roots are conjugated, they are both of module > 1.

Exercise 2 [Catalytic variables and fountains]
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1. There are 5 such fountains: 1 with 5 coins at its base, 3 with 4 coins at it
base (and 1 coins in its second row), 1 with 3 coins at it base (and 2 coins
in its second row).

2. Take a fountain with n coins whose basis has k coins and whose second row
has k−1 coins, then remove the basis: you get a fountain with n−k coins
whose basis has k − 1 coins (it is indeed a fountain because no coin was
missing in the second row of the starting fountain). This defines a bijection
between (n, k)-fountains whose second row is complete, and (n−k, k−1)-
fountains. Hence gn,k = fn−k,k−1. Writing the generating series, we get
(setting j = k − 1 and m = n− k = n− j − 1):

G(x, t) =
∑
n,k

fn−k,k−1x
ntk =

∑
m,j

fm,jx
m+j+1tj+1 = xtF (x, xt)

3. Fix a (n, k)-fountain A. Consider the first missing coin of the second row
of A, say the rth one (for any r ∈ [k]): you can split A into a left part and
a right part. The left part is formed by a basis of r coins together with
all the coins which are above the r leftmost ones in the basis of A. The
right part is formed by a basis of n − r coins together with all the coins
which are above the n− r rightmost ones in the basis of A. As there is no
rth coin in the second row of A, these left and right part are disjoint (and
there union is A). Consequently, this defines a bijection from non-empty
(n, k)-fountains to pairs of fountains (B,B′) such that B is a fountain
whose second row is complete, and the sum of the number of coins of B
and B′ is n, and the sum of the size of the bases of B and B′ is k. Thus,
we get the equation on the level of generating functions (the +1 accounts
for the empty fountain with 0 coins):

F (x, t) = F (x, t) ·G(x, t) + 1

4. Re-writing the last two equations give:

F (x, t) =
1

1− x · t · F (x, xt)
=

1

1− xt · 1
1−x·xt·F (x,x·xt)

= . . .

Continuing replacing F (x, xkt) iteratively, we get the desired expression.
Besides, note that F (x) =

∑
n fnx

n =
∑

n

(∑
k fn,k · 1k

)
xn = F (x, 1).

This gives the right expression.
5. For any (n, k)-fountains, linking the centers of the top coins draws a Dyck

path (make a drawing) of length 2k. This gives a bijection (don’t forget
to check the reciprocal) between fountains with basis k and Dyck paths.
Hence the number of fountains with basis k is the kth Catalan number. In
particular, the given Figures depicts the case k = 4, and there are indeed
Catalan(4) = 14 fountains with basis 4.
Besides, we know that ck =

∑
n fn,k, hence F (1, t) is the generating series

of ck. As ck are the Catalan number, we obtain F (1, t) = 1−
√
1−4t
2t . The

left expression in 4. gives also F (1, t) = 1
1− t

1− t
1− t

...

.
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Exercise 3 [Motzkin paths]

1. There are 2 paths of length 2, then 4 paths of length 3, and 9 paths of
length 4 depicted in Figure 21.

2. If y1 = 0, then the paths
(
(0, y1), (1, y2), . . . , (n− 1, yn)

)
is again a Motz-

kin path (obtained by translating the starting Motzkin path to the left),
because the we are still using the same steps.
Reciprocally, taking a Motzkin path of length n−1, moving it in direction
(+1, 0), and appending a point (0, 0) gives a Motzkin path of length n
with y1.
As these two constructions are inverse to each other, this describes the
desired bijection.

3. Fix a Motzkin path P of length n. Let i◦ be the smallest index such
that yi◦ = 0, and Q◦,Q′ the sub-paths of P from 0 to i◦ and from i◦ to
n respectively. As y1 > 0, we know that i◦ > 1, and in particular, Q◦
starts with a step (+1,+1). Moreover, Q◦ finishes by a step (+1,−1), by
minimality of i◦. Hence, taking the sub-path Q of Q◦ defined from 1 to
i◦− 1 (and translating it by (0,−1)) we get a Motzkin path such that the
sum of the lengths of Q and Q′ is n− 2.
Reciprocally, taking two Motzkin paths whose lengths sum to n − 2, we
can construct a Motzkin path of length n by appending a step (+1,+1)
at the beginning of Q, a step (+1,−1) at its end, and concatenating the
resulting path with Q′.
As these two constructions are inverse to each other, this describes the
desired bijection.

4. A Motzkin path of length n is either the empty path, or a Motzkin path
with y1 = 0, or a Motzkin path with y1 > 1. Thanks the two previous
questions, we deduce that, up to bijection: a Motzkin path of length n
is either the empty path, or a Motzkin path of length n − 1, or a pair
of Motzkin paths whose lengths sum to n − 2. Hence the number mn of
Motzkin paths satisfies m0 = 1, and mn = mn−1 +

∑
i+j=n−2 mimj for

n ≥ 1. Summing, we get: M(z) = 1 + zM(z) + z2M(z)2

5. Re-writing the above gives the polynomial equation of degree 2 (the va-
riable is M(z)):

z2M(z)2 + (z − 1)M(z) + 1 = 0

The discriminant is ∆(z) = (z − 1)2 − 4 · z2 · 1 = −3z2 − 2z + 1. The

solutions are M(z) =
−(z−1)±

√
∆(z)

2z2 . For z = 0, we have M(0) = m0 = 1.
Hence the numerator shall tends to 0 when z → 0 (for the fraction to

converge). This implies that M(z) =
−(z−1)−

√
∆(z)

2z2 , which is the desired
formula.

Exercise 4 [Non-self-intersecting paths]

1. a1 counts paths of exactly one step. There are 3 such paths (N, E, W).
For the recurrence, we distinguish different types of paths of length n.
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Abbildung 21: Motzkin paths of length 4

Type 1: Paths that start with N . In this case, the remaining path is an
arbitrary path of length n − 1 satisfying the given conditions. There are
an−1 of these.
Type 2: Paths that start with EN , EE, or WW . These are in bijection
with paths of length n − 1: one can shorten a path of length n to obtain
a unique path of length n− 1, and vice versa. So there are also an−1 such
paths.
Type 3: Paths that start with WN . In this case, the remaining path is of
length n− 2, satisfying the conditions. There are an−2 of these.
Thus, the required recurrence follows.

2. The recurrence can be rewritten as

an = 2an−1 + an−2 for n ≥ 2

⇔ an+2 = 2an+1 + an for n ≥ 0

⇔ an+2 − 2an+1 − an = 0 for n ≥ 0.

By Theorem 11.18 (i), an has a rational generating function fa(z) =∑
n≥0 anz

n = P (z)
Q(z) , with Q(z) = 1 − 2z − z2 and P (z) a polynomial

of degree less than 2. We compute:

P (z) = (a0 + a1z + higher terms)(1− 2z − z2)

= a0 + (−2a0 + a1)z

= 1 + (−2 + 3)z = 1 + z.
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3. By Theorem 11.18 (iii), an has an explicit formula of the form

an =

k∑
i=1

Pi(n)γ
n
i .

First, determine the γi for i = 1, . . . , k. The roots of Q(z) are found using
the quadratic formula:

z1,2 = −1±
√

12 + 1 = −1±
√
2.

The γi are the reciprocals of these roots:

γ1 =
1

−1 +
√
2
=

√
2 + 1

1
, γ2 =

1

−1−
√
2
= 1−

√
2.

Alternative:
The reciprocal polynomial is

QR(z) = z2Q

(
1

z

)
= z2 − 2z − 1,

with roots z1,2 = 1±
√
2. These roots are precisely the γi, since:

Q(z) = (1− (1 +
√
2)z)(1− (1−

√
2)z).

So, γ1 = 1 +
√
2, γ2 = 1−

√
2, and

an = P1(n)(1 +
√
2)n + P2(n)(1−

√
2)n,

where P1(n), P2(n) are polynomials of degree ¡ 1, i.e., constants A,B ∈ C:

an = A(1 +
√
2)n +B(1−

√
2)n.

Using initial values:

1 = a0 = A+B

3 = a1 = A(1 +
√
2) +B(1−

√
2)

Solving yields B = 1−A, and:

3 = A(1 +
√
2) + (1−A)(1−

√
2) = 2

√
2A+ 1−

√
2,

which gives:

A =
2 +
√
2

2
√
2

=
1 +
√
2

2
, B = 1− 1 +

√
2

2
=

1−
√
2

2
.

So the explicit formula is:

an =

(
1 +
√
2

2

)
(1 +

√
2)n +

(
1−
√
2

2

)
(1−

√
2)n

for all n ∈ N.
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4. If the self-intersection restriction is removed, then each step has 3 possi-
bilities, so the number of such paths is 3n.

Exercise 5 [Bonus – Decimal expansion]
It sounds magic, but sadly it is not.

Let Cn be the nth Catalan number. A number whose decimal expansion
would group into blocks of 3-digits figuring the 7 first Catalan numbers is:

1

1000
C0 +

1

10002
C1 +

1

10003
C2 + · · ·+

1

10007
C6

Hence, let’s look at the series
∑

n≥0
1

1000n+1Cn = 1
1000

∑
n≥0 Cn

(
1

1000

)n
. The

later is the evaluation of z ·C(z) at z = 1
1000 , where C(z) is the generating series

of Catalan numbers. From the course, you know that C(z) = 1−
√
1−4z
2z , so:

∑
n≥0

1

1000n+1
Cn =

1

2
−
√

1

4
− 1

1000

Conversely, we have just proven that the decimal expansion of the real num-

ber 1
2 −

√
1
4 −

1
1000 (i.e. 0.5 −

√
0.249) will display the Catalan numbers inside

blocks of 3 digits, together with some messy digits after the 3 · 7 = 21 position
after the coma. This displaying trick will work for any Catalan number which is
on at most 3 digits, except if some bigger (4-digit) Catalan number generate an
arithmetic carry: this is only the case for the biggest 3-digit Catalan number,
i.e. 429 will not display correctly.

Of course, changing 1
1000 by 1

10k
will display Catalan numbers in blocks of

k digits, in the decimal expansion of 1
2 −

√
1
4 −

1
10k

= 0.5−
√
0.2499 . . . 99 with

k − 2 many 9s.
I invite you to trick your friends with other decimal expansions: it always

sound very mystical at first glance!
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Discrete Mathematics – Summer Semester 2025

Exercise Sheet 12

For each exercise, 10 points can be achieved. The Bonus Exercise can give up
to +5 bonus points (so don’t make it your priority). This is the English version
of the same exercises as above, don’t do them twice!

Exercise 1 [Exponential generating functions]
Remember that the exponential generating function associated to the sequence
of numbers (an)n≥0 is A(z) =

∑
n≥0 an

zn

n! .

1. Show that A′(z) =
∑

n≥0 an+1
zn

n! , where A
′ denote the usual derivative of

A (with respect to z).
2. Give the exponential generating function of the number of permutations.
3. Let an be the number of permutations in Sn whose square is the identity,

i.e. σ(σ(i)) = i for all i ∈ [n]. Prove combinatorially: an+1 = an + nan−1.

4. Fix α, λ, µ ∈ R, and derive x 7→ αeλx
2+µx. Then find an explicit formula

for the exponential generating function of (an)n≥0 (you can consider that
a0 = 1).

Exercise 2 [Rencontres numbers]
A fixed point of a permutation σ ∈ Sn is an index j ∈ [n] satisfying σ(j) = j.
Let Dn,k be the number of permutations σ ∈ Sn with k fixed points, called the
rencontres number ; and let D(z, u) =

∑
n≥0

∑
k≥0 Dn,ku

k zn

n! .

1. Show that Dn,k =
(
n
k

)
Dn−k,0.

2. Recall from the course (or re-prove): 1
n!Dn,0 = 1− 1

1!+
1
2!−

1
3!+· · ·+(−1)n 1

n! .

Deduce that
∑

n≥0 Dn,0
zn

n! = e−z

1−z , and that D(z, u) = e(u−1)z

1−z .
3. You’ve organized an exam for your students, but you are too lazy to

correct, so you give back randomly the exam sheets to the students, and
ask each student to correct the new sheet he/she has received. Assuming
you have a lot of students, approximate the probability that no student
received its own exam sheet.

4. Using a double counting argument, determine what is the average number
of fixed point of the permutations on n elements.

Exercise 3 [Conjugation of permutations]
The inverse of a permutation σ ∈ Sn is the permutation, denoted σ−1, such
that σ

(
σ−1(i)

)
= σ−1

(
σ(i)

)
= i for all i.
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1. For σ, τ ∈ Sn, show that σ and τστ−1 have the same type.
2. Show that σ and σ−1 have the same type.
3. Deduce that for all σ ∈ Sn, there exists τ ∈ Sn such that σ−1 = τστ−1.

Exercise 4 [Bruhat graph and Steinhaus–Johnson–Trotter algorithm]
The Bruhat graph Γn on permutations is defined as follow: the vertices are the
permutations σ ∈ Sn, and there is an edge between σ and σ′ if and only if there
exists a transposition2 τ = (i i+1) with i ≤ n− 1 such that σ = σ′τ .

1. Draw Γ2, Γ3.
2. How many vertices does Γn has? How many edges? Show that Γn is regular.

Of which degree?
3. For which n is Γn Eulerian.
4. The Steinhaus–Johnson–Trotter algorithm works as follows: Start with

the identity permutation (1 2 . . . n). Now find and transpose the largest
possible number that can be transposed to its left or right, such that in
each step, a new permutation is created that has not been encountered
before. Show that Steinhaus–Johnson–Trotter algorithm enumerates all
permutations of Sn, and deduce that Γn is Hamiltonian.

Exercise 5 [Bonus – Futurama’s theorem]
In the 10th episode of season 6 of Futurama, Pr. Farnsworth invents a machine
that allows two minds to swap between two bodies. Thus, Amy’s mind ends
up in Farnsworth’s body, and vice versa. The first problem is that if a swap is
made, it is impossible to revert it (Farnsworth and Amy can no longer swap
their minds back). The second problem is that very quickly, all the characters
in the series use the machine: first Amy’s body is exchanged with Farnsworth’s
body, then Bender’s body is exchanged with Amy’s body, Farnsworth’s body
with Bender’s body, Leela with Farnsworth, Amy with the Robotic Bucket, Fry
with Zelberg, Nikoläı with the Robotic Bucket, Hermes with Leela (Figure 22).

About ten minds are scattered across as many bodies... How to resolve this?
The solution is explained by the two mathematician-basketball players, Sweet

Clyde and Bubblegum Tate: by adding only two people, it is possible to restore
all minds to their original bodies, regardless of the number of swaps that have
been made.

The theorem shows that if the bodies and minds of k people are mixed up,
it takes only 2 more people and at most k+3 swaps to return everyone to their
original state.

Prove this theorem, and show that, in the context of the series, the problem
can be solved in 9 swaps without the intervention of any additional people.

It is indeed the proof of a new theorem in group theory. Completely written
out. In a TV series.

Submission: 16.07.2025 before 23:59

2A transposition is a cycle of length 2.
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Abbildung 22: The mind of the person on top (in the pink area) is now in the
body of the person on the bottom. On this figure, the first 3 swaps have not
been depicted.

Tutorium additional exercises

Exercise 6 [With ChatGPT]
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Discrete Mathematics – Solutions Sheet 12

Exercise 1 [Exponential generating functions]

1. We have ∑
n≥0

an
zn

n!

′

=
∑
n≥1

an
zn−1

(n− 1)!
=
∑
n≥0

an+1
zn

n!

2. There are n! permutations in Sn, hence the associated exponential gene-
rating function is

∑
n≥0

n!
n!z

n =
∑

n≥0 z
n = 1

1−z .
3. Let σ ∈ Sn be a permutation whose square is the identity. We distinguish

between if σ(n) = n or not. If σ(n) = n, then let σ′ ∈ Sn−1 be defined
as σ′(i) = σ(i) for i ∈ [n − 1]: the square of σ′ is the identity if and only
if the square of σ is too. If σ(n) = k < n, then consider σ′′ to be the
permutation of [n]\{n, k} defined by σ′′(i) = σ(i) for i /∈ k, n: the square
of the permutation σ′′ is the identity if and only if the square of σ is
too. Consequently, there is a bijection between {σ ∈ Sn ; σ2 = id} and
{τ ∈ Sn−1 ; τ2 = id} ∪ {(γ, k) ∈ Sn−2 × [n − 1] ; γ2 = id}. We deduce
an = an−1 + (n− 1)an−2. A simple shift gives the desired formula.

4. Be careful, this is not a linear recurrence: some coefficient depends on n.
Yet, passing the above formula to exponential generating functions, we
get: ∑

n≥0 an+1
zn

n! =
∑

n≥0 an
zn

n! +
∑

n≥0 an−1
zn

(n−1)!

A′(z) = A(z) + z
∑

n≥0 an
zn

n!

A′(z) = A(z) + zA(z)

Consequently, A′(z) = (1 + z)A(z). To solve this differential equation,
either you know he theory of first order differential equations, or you can
use the hint: let f(x) = αeλx

2+µx, then f ′(x) = α(2λx + µ)eax
2+b =

(2λx + µ)f(x). In particular, for λ = 1
2 and µ = 2, and any α, we get

the same equation as for A. Thus, A(z) = αe
1
2x

2+x for some α ∈ R. Last
but not least, to get the value of α, we evaluate: A(0) = a0 = 1, and

A(0) = αe
1
2 ·0+0 = α.

Finally: A(z) = e
1
2x

2+x.

Exercise 2 [Rencontres numbers]

1. There is a bijection between permutations σ ∈ Sn with k fixed points and
pairs (X, τ) where X ∈

(
[n]
k

)
and τ ∈ Sn−k with no fixed points: namely

let X be the set of fixed points of σ, and τ be the permutation induced
by σ on [n]\X (please, construct the reverse bijection). Consequently:
Dn,k =

(
n
k

)
Dn,0.
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2. The proof relies on the trivial fact that
∑

k Dn,k = n!, because
∑

k Dn,k is
the number of permutations with any number of fixed point. Recall that∑

n≥m zn = 1
1−z z

m We have:

∑
n≥0

Dn,0

n!
zn =

∑
n≥k≥0

(−1)kzn

k!
=

1

1− z

∑
k≥0

(−z)k

k!
=

e−z

1− z

Consequently (the last transformation is obtained via p = n− k):

euz · e−z

1− z
=

∑
k≥0

uk z
k

k!

 ·
∑

p≥0

Dp,0
zp

p!


=
∑
p,k≥0

Dp,0
1

k!p!
ukzk+p

=
∑

n,k≥0

Dn−k,0
n!

k!(n− k)!
uk z

n

n!

Recalling
(
n
k

)
= n!

k!(n−k)! , we get D(z, u) = e(u−1)z

1−z .

3. When you hand back the exam sheets to the students, you doing a per-
mutations of the n exam sheets. A student received its own exam sheet if
and only if it is a fixed point of such permutation. Hence the probability
that no student receive its own sheet is the number of permutations with
no fixed point, i.e. Dn,0, divided by the total number of permutations,

n!. Consequently, we want the limit of
Dn,0

n! =
∑n

k=0
(−1)k

k! . Recall that

ex =
∑

k≥0
xk

k! , hence
Dn,0

n! −−−−−→n→+∞
e−1 ≈ 0.368. There is a bit more than

1 chance out of 3 that no student gets its own sheet.
4. Denote by f(σ) the number of fixed points of a permutation σ ∈ Sn.

We want to compute m = 1
n!

∑
σ∈Sn

f(σ). Let’s double-count the set
{(σ, x) ; σ ∈ Sn, x ∈ [n], σ(x) = x}. Firstly,

∑
σ∈Sn

∑
x∈[n], σ(x)=x 1 =∑

σ∈Sn
f(σ) = m · n!. Secondly, for a fixed x ∈ [n], the number of per-

mutations σ ∈ Sn such that σ(x) = x is (n − 1)! because such a permu-
tation is just a permutation of [n]\{x}. Hence,

∑
x∈[n]

∑
σ∈Sn, σ(x)=x 1 =∑

x∈Sn
(n− 1)! = n!. Finally: m = 1.

Exercise 3 [Conjugation of permutations]
Let σ, τ ∈ Sn where τ is a transposition. We are interested in the cycle type of
s = στσ−1. Write τ = (a b). If x ̸= σ(a), σ(b), then s(x) = x and s(σ(a)) = σ(b)
and s(σ(b)) = σ(a), so s = (σ(a)σ(b)). In fact, for any permutation γ ∈ Sn,
we can write γ as a product of transpositions3 γ = τ1τ2 . . . τk, and look at
s = σγσ−1:

s = στ1 . . . τkσ
−1 = (στ1σ

−1)(στ2σ
−1) . . . (στkσ

−1)

3This also works with the cycle decomposition.
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Indeed, by changing all [1, n] that appear in the cycle decomposition of γ to
[σ(1), σ(n)], we obtain the cycle decomposition of σγσ−1. Thus, the cycle type
of γ has not been modified by the conjugation.

The inverse of a p-cycle is also a p-cycle (it is the same cycle written in rever-
se order), so by decomposing γ into a product of disjoint cycles, then inverting
each of its cycles, we indeed obtain γ−1 with the same cycle type.

In fact, we showed something much more powerful earlier: we showed that
two permutations that have the same cycle type are conjugate. Indeed, let two
permutations of the same cycle type be γ, γ′, we write them as a product of
cycles π1π2 . . . πk and π′

1π
′
2 . . . π

′
k, we define the permutation σ that maps π1 to

π′
1, etc. (“associate”means that if π1 = (a1 a2 . . . ap) and π′

1 = (b1 b2 . . . bp) then
σ(ai) = bi). Once done, we have σγσ−1 = γ′.

In particular, σ−1 has the same cycle type as σ, so they are conjugated. This
is quite a peculiar property and is not true in any group (for example, it is false
in a cyclic group or a commutative group).

Exercise 4 [Bruhat graph and Steinhaus–Johnson–Trotter algorithm]

• •1 2 2 1

Γ2

•

•

•

•

•

•

1 2 3

1 3 2

3 1 2

3 2 1

2 3 1

2 1 3

Γ3

1. See figure.

2. Γn has n! vertices. Each vertex has degree n − 1 because there are n − 1
transpositions of the form (i i+1) with i ≤ n − 1. Hence Γn is regular,

and the degree formula gives us that Γn has (n−1)×n!
2 edges.

3. For n odd, all the vertices of Γn have degree n − 1, which is even, hence
Γn is Eulerian. For n even, the converse happens.

4. we are going to proceed by induction. For n = 2, Steinhaus–Johnson–
Trotter algorithm starts at 1 2, the biggest number that can be transposed
(to its left or right) is 2, and we get 2 1, in which the biggest number that
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can be transposed is again 2, and we are back at 1 2. We encourage the
reader to run the algorithm for n = 3. Suppose the algorithm works for
n (i.e. enumerates all permutations of Sn when starting with (1 2 . . . n)),
we are going to show it works for n+ 1. By definition, the algorithm only
lists different permutations, so we have to show that it lists them all: we
can either fix a permutation and prove that it is listed by the algorithm,
or count the number of permutations listed in total and show it is (n+1)!.
We show the second. Take a step in the algorithm for n+ 1, and suppose
n + 1 can not be transposed. Then this step will just be a transposition
of i ≤ n with j ≤ n, that is to say it is a step the algorithm for n
makes. Now, let’s start at 1 2 . . . n n+1 and run the algorithm. During
the first n steps, the number n + 1 will be transposed to the left, until
we get n+11 2 . . . n. At this point, n + 1 can not be transposed, so 1
step of the algorithm for n is performed. Then, n + 1 will be transposed
to the right, until it reaches the rightmost position; then 1 step of the
algorithm for n will be performed; then n + 1 will be transposed to the
left until the leftmost position; and so on. Consequently, all the steps for
of the algorithm for n will be performed, and n steps will be performed in
between. In total, for each permutation that is yield by the algorithm for
n, there are n+1 permutations yield by the algorithm for n+1. This gives
a total of (n+1)! different permutations yield by the algorithm for n+1: all
permutations are enumerated. Besides, two permutations are consecutive
in the enumeration given by the algorithm if and only if they differ by a
transposition, so the enumeration of permutations given by algorithm for
n is an Hamiltonian cycle (it comes back at the beginning after visiting
all permutations) of the graph Γn.

Exercise 5 [Bonus – Futurama’s theorem]
The solution is here :

https://www.youtube.com/watch?v=J65GNFfL94c
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